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Preface 

These Lectures on String Theory are an extended version of 

lectures we gave at the Max-Planck-Institut fiir Physik und Astro- 

physik in Munich in fall and winter 1987/88. They were meant to 

be an introduction to the subject and this is also the intention of 

these notes. 

We have not attempted to give a complete list of references. In- 

stead, at the end of each chapter we give a short list of the original 

papers and some reviews we found helpful and were familiar with. 

An indispensable general reference is the book by Green, Schwarz 

and Witten: Superstring Theory, 2 Vols., Cambridge University 

Press, 1987. It also contains a more complete set of references, 

in particular for our chapters 2, 3, 5 and 7 - 9. Early reviews are 

collected in Dual Resonance Theory, ed. M. Jacob, Physics Reports 

Reprints Vol. I, North Holland, 1974. 

We would like to thank our collaborators S. Ferrara, I.-G. Koh, 

J. Lauer, W. Lerche, B. Schellekens and G. Zoupanos, from whom 

we have learned much of the subject presented here. We also ac- 

knowledge helpful discussions with many other people and thank 

in particular L. Alvarez-Gaum6, W. Buchmiiller, L. Castellani, P. 

Forg£cs, F. Gieres, G. Horowitz, P. Howe, L. Ibafiez, T. Jacobsen, J. 

Kubo, H. Nicolai, H.-P. Nilles, R. Rohm, M. Schmidt, J. Schnittger, 

J. Schwarz, A. Shapere, M. Srednicki, i~. Stora, N. Warner, P. West, 

A. Wipf and R. Woodard. We thank P. Breitenlohner for supply- 

ing his powerful TEX macro package and J. Paxon for her help in 

preparing the manuscript. 

CERN, Geneva, 1989 Die ter  Liist 

S te fan  T h e i s e n  
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Chapter 1 

In troduct ion  

String theory is currently one of the main activities among high energy 

theorists. It began at the end of the 1960's as an attempt to explain the 

spectrum of hadrons and their interactions. It was however discarded as a 

theory of strong interactions, a development which was supported by the 

rapid success of quantum chromodynamics. One problem was the existence 

of a critical dimension, which is 26 for the bosonic string and 10 for the 

fermionic string. Another obstacle in the interpretation of string theory as 

the theory of strong interactions was the existence of a massless spin two 

particle which is not present in the hadronic world. 

In 1974 Scherk and Schwarz suggested to turn the existence of the mass- 

less spin two particle into an advantage for string theory by interpreting this 

particle as the graviton, the field quantum of gravitation. This implies that 

the string tension has to be related to the characteristic mass scale of gravity, 

namely the Planck mass M p  - ~/--~/G ~ 1019GeV. They also recognized 

that at low energies this graviton interacts according to the covariance laws 

of general relativity. In this way string theory could, at least in princi- 

ple, achieve a unification of gravitation with all the other interactions in a 

quantized theory. 

At that time it was only known how to incorporate non-abelian gauge 

symmetries in open string theories. Moreover, any open string theory with 

local interactions which consist of splitting and joining of strings automat- 

ically also contains closed strings with the massless spin two state in its 



spectrum. These theories are however plagued by gravitational and gauge 

anomalies which were beheved to be fatal. 

The renewed interest in string theory started again in 1984 when Green 

and Schwarz showed that the open superstring is anomaly free if and only if 

the gauge group is SO(32). In addition they found that the ten-dimensional 

supersymmetric Einstein-Yang-Mills field theory is anomaly free for the 

gauge group SO(32) and also for the phenomenologically more interesting 

group E 8 x E8, which is however excluded in the open string theory. This 

puzzle was resolved soon after by Gross, Harvey, Martinec and Rohm with 

the formulation of the heterotic string. It is a theory of closed strings only 

and represents the most economical way of incorporating both gravitational 

and gauge interactions. The allowed gauge symmetries E 8 x E 8 or SO(32) 

arise in a way different from the open string due to the incorporation of the 

so-called Kac-Moody algebras, which are infinite-dimensional extensions of 

ordinary Lie algebras. 

On the other hand, the heterotic string is formulated as a ten-dimen- 

sional theory and obviously fails to reproduce an important experimen- 

tally estabhshed fact, namely that we hve in four-dimensional (almost) flat 

Minkowski space-time. 

The first approach to obtain four-dimensional string theories was along 

the old ideas of Kaluza and Klein, namely to consider compactifications 

of the ten-dimensional heterotic string theory. In this case, four string 

coordinates are uncompactified, whereas the remaining six are curled up and 

describe a tiny compact space whose size is of the order of the Planck length. 

The internal space can however not be arbitrarily chosen; the requirement 

of preserving conformal invariance puts severe constraints on it. Analyzing 

these constraints it turns out that the internal six-dimensional space must 

have vanishing Ricci-curvature. Examples are tori or the so-called Calabi- 

Yau manifolds. 



More recently, it was discovered how one can construct (heterotic) string 

theories directly in four dimensions without ever referring to any compacti- 

fication scheme. This opened a wide range of possibilities to obtain consis- 

tent string theories in four dimensions. In the most general four-dimensional 

string theories the part which refers to the extra dimensions (above four), 

which is needed because of conformal invariance, is replaced by a general 

conformal field theory. This internal conformal field theory has to obey 

some additional consistency requirements (like modular invariance, as we 

will discuss in some detail), but does however not need to admit an inter- 

pretation as a compact six-dimensional space. Unfortunately there exists a 

huge number of consistent internal conformal field theories, destroying the 

once celebrated uniqueness of string theory. In addition there exists so far 

no compelling principle which determines the number of space-time dimen- 

sions to be four. All dimensions below ten seem to be on an equal footing. 

However, the uniqueness in string theory could still be true in the sense that 

all different models are just different ground states, i.e. different classical 

solutions of an unique second quantized string theory. Then one specific 

string vacuum with a specific (hopefully correct) choice of gauge group and 

number (hopefully four) of flat space-time dimensions could be singled out 

by an underlying dynamical principle. At the moment, this is however 

wishful thinking and all ideas in this direction must be considered as pure 

speculations. Nevertheless, many of the four-dimensional heterotic string 

models exhibit promising aspects for phenomenology. However, within the 

context of string theory the word phenomenology should not be taken too 

seriously. At present one should only expect an explanation of generic fea- 

tures of the observed world, such as the presence of chiral fermions, the 

number of generations etc. 

These lecture notes are intended to provide some of the tools which are 

necessary for the construction of four-dimensional (heterotic) string theo- 



ries. Our main emphasis is on the relation to conformal field theory. One of 

the constructions of four-dimensional heterotic strings, namely the covari- 

ant lattice construction, will be discussed in detail. For an outline of the 

topics covered we refer to the table of contents. The selection we made was 

dictated by limitations of space and time and by our preferences. 



Chapter  2 

The Classical Bosonic String 

Even though we will eventually be interested in understanding string theory 

at the quantum level and want to be able to discuss the interaction of several 

strings, it will turn out to be useful to start  two steps back and treat the 

free classical string. Doing this we will set up the Lagrangian formalism 

which is essential for the path-integral quantization treated in Chapter  3 

and solve the classical equations of motion of a single free string. These 

solutions will be used for the quantization in terms of operators, which we 

will discuss in detail in the next chapter. 

2.1 T h e  r e l a t i v i s t i c  p a r t i c l e  

Before treating the relativistic string, we will, as a warm up exercise, first 

s tudy the free relativistic particle of mass m moving in a d-dimensional 

Minkowski space. Its action is simply the length of its world-line 1 

vii/2 (2.1) 
d ' [ -  a ,  d ,  , d s  0 4 r  0 

where r is an arbitrary parametrization of the world-line, whose em- 

bedding in d-dimensional Minkowski space is described by real functions 

x~(7-), # = 1 , . . .  ,d (we use the metric z/#v = d iag ( -  + . - . + ) ) .  The ac- 

tion eq.(2.1) is invariant under r-reparametrizations. Under infinitesimal 

reparametrizations x~ transforms like 

l i t  is easy to generalize the action to the case of a particle moving in a curved 

background by simply replacing the Minkowski metric r/~v by a general metric g~v. 



~x,(~)  : ~(~)o ,x"(~) .  (2.2) 

Invariance h o l d s  as l ong  as ~(r0) = ~ ( n )  = O. The m o m e n t u m  c o n j u g a t e  to  

x~(r) is 
OL ~ 

p~ -- m ~  (2.3) 
- o z ,  _ , / - 2 ~ '  

where the dot denotes derivative with respect to ~- and z2 = rjuuS:u~?u. 

Eq.(2.3) immediately leads to the following constraint equation 

¢ _ p 2  + m  2 = 0 .  (2.4) 

Constraints which, as the one above, follow from the definition of the conju- 

gate momenta without the use of the equations of motion, are called primary 

constraints. Their number is equal to the number of zero eigenvalues of the 

Op 02L which, in the case of the free relativistic particle, is matrix ~ -- ~ ,  

just one, the corresponding eigenvector being xtL. We note that the absence 

of zero eigenvalues is necessary (via the inverse function theorem) to express 

the "velocities" it* uniquely in terms of the "momenta" and "coordinates", 
02L pt* and x ft. Systems where the rank of ~ is not maximal, thus implying 

the existence of primary constraints, are called singular. For these systems 

the v-evolution is governed by the Hamiltonian H - /- /can + ~ Cnqgn, where 

//can is the canonical Hamiltonian, the Cn an irreducible set of primary 

constraints and the cn constants in the coordinates and momenta. This is 

so since the canonical Hamiltonian is well defined only on the submanifold 

of phase space defined by the primary constraints and can be arbitrarily 

extended off that  manifold. For the free relativistic particle we find that 

0L-i t  _ L vanishes identically and the dynamics is completely Hcan = x3"~" ~ 

determined by the constraint, eq.(2.4). The condition /-/can = 0 implies 
02 L 0 t f  the existence of a zero eigenvalue of ~ = ~ can. This is always 

the case for systems with "time"-reparametrization invariance and follows 

from the fact that  the "time" evolution of an arbitrary function f (a ,p ) ,  

given by dd@ = ~ + {f ,H}p.B.,  should also be valid for ~ = ~(v) on the 



constrained phase-space; here {, }P.B. is the usual Poisson bracket defined 

by {f ,g}P.S.  = ( ~  oxO~]op o, ]" From this we also see that a part icular choice 

of the constants cn corresponds to a particular gauge choice which, for the 

relativistic particle, means a choice for the "time" variable r .  We write 

H = ~m(p 2 + rn 2) (2.5) 

and find tha t  

dZ~dT N N2~ (2.6) = = 

from which follows that  2 2 = - N  2. Thus, the choice N = 1 corresponds to 

choosing as the parameter  7- the proper time. 

At this point it is appropriate to introduce the concept of first and 

second class constraints. If {¢k} is the collection of all constraints and if 

{Ca, ¢k}P.~. -- 0, Vk upon application of the constraints, we say tha t  ¢a is 

first class. Otherwise it is called second class. First class constraints are 

associated with gauge conditions. 

For the relativistic particle the constraint given in eq.(2.4) is trivially 

first class and reflects r reparametrization invariance. 

Classically we can describe the free relativistic particle by an alternative 

action which has two advantages over eq.(2.1): (i) it does not contain a 

square root and (ii) it allows the generalization to the massless case. This 

is achieved by introducing an auxiliary variable e(~-), which can be viewed 

as an einbein on the world-line. The action then becomes 

1 ( _2(dx  2 
S = - ~ : l d r e k e  '-d-~--r / - m 2) .  (2.7) 

We derive the equations of motion 

~S 0 :=~ ~2 + e2m2 _. O , 

(2.8) 
d 

5x~ - 0 : .  ( e - l ~  ~) = 0 



Since the equation of motion for e is purely algebraic, we can solve it for e 

and substi tute it back into the action eq.(2.7) to obtain the action eq.(2.1), 

thus showing their classical equivalence. 2 We note that  since ~ = 

e-lrl ~u has maximal  rank we now do not have primary constraints. The 

constraint equation p2 + m 2 = 0 does not follow from the definition of 

the conjugate momen ta  alone; in addition one has to use the equations of 

motion. Constraints of this kind are called secondary constraints. But since 

it is first class it implies a symmetry. Indeed, the action eq.(2.7) is invariant 

under v-reparametrizations under which 

(2.9) 

and we can use r reparametrization invariance to go to the gauge e = 1/m. 
If we then naively used the gauge fixed action to find the equations of motion 

we would find ~g = 0, whose solutions are all straight lines in Minkowski 

space, which we know to be incorrect. This simply means that  we cannot 

use the reparametrizat ion freedom to fix e and then forget about it. We 

rather have to use the gauge fixed equation of motion for e, which reads 

T - 5 2 + 1 = 0, as a constraint. This excludes all t ime-hke and hght-hke 

lines and identifies the parameter r in this particular gauge as the proper 

time. (In the massless case we set e = 1 and have to supplement the 

equation ~g = 0 by the constraint T - 5 2 = 0, which leaves only the light- 

like world-lines.) Note that  the equation of motion, ~g = 0, does not imply 

T 0, but  it implies that  dT = ~ = 0, i.e. T = 0 is a constraint on the initial 

data and is conserved. 

2It is important to point out that classical equivalence does not necessarily imply 

quantum equivalence. 



2.2 T h e  N a m b u - G o t o  a c t i o n  

Let us now turn  to the string. The generalization of eq.(2.1) to a one- 

dimensional object is to take as its action the area of the world-sheet swept 

out by the string, i.e. 

SNG = - T  / dA 

= _T f d2~[=det~ OX~ ]1/2 
(2.10) 

-T f d2~vZAT, 
where ga __= (or, v) are the two parameters describing the world-sheet; the dot 

denotes derivative with respect to r and the prime derivative with respect 

to or. X~(a, r) ,  # = 1 , . . . ,  d, are maps of the world-sheet into d-dimensional 

Minkowski space and T a constant of mass dimension two, the string tension. 

-- ~-0-~-- 0-- j , /~ ,  is the metric on the world-sheet inherited from the 

underlying d-dimensional Minkowski space the string is moving in and F < 0 

is its determinant.  The requirement that  /~ be negative means that  at 

each point the world-sheet has one time-like or light-like and one space- 

like tangent vector. This is necessary for causal propagation of the string. 

Requiring X~ + AX r~ to be time-like and space-like when A is varied gives 

F < 0. The action eq.(2.10) was first considered by Nambu [1] and Goto 

[2], hence the subscript NG. Being the area of the world-sheet, the action 

is invariant under reparametrizations: 

~z~(cr, r)  = ~aOax~(cr, r)  (2.11) 

as long as ~a = 0 on the boundary. X~ transforms as a scalar under 

reparametrizations of the world-sheet. 3 

3A general tensor density of rank, say (1,1), and weight w transforms under 



We will choose the parameter  cr such that  0 < ~r _< ~ where ~ = 7r 

for open strings and ~ = 2zr for closed strings. To derive the equations 

of motion for the string we vary its trajectory, keeping initial and final 

positions fixed; i.e. ~Xg(r0) = 0 = 8Xg(r~) but at the ends of the open 

string ~Xg(cr, v) is arbitrary. We then get 

cO cOL cO cOL 
cOT cOj(g +COa COX ~" - -  0 (2.12) 

together with the edge condition for the open string 

cOL 
cOX1 ~ - 0 at a = O, ~r (2.13) 

and the periodicity condition for the closed string 

x"(~  + 2~) = x ' ( ~ ) .  (2.14) 

Physically the edge condition means that  no momentum flows off the ends 

of an open string. This will become clear below. Due to the square root 

in the action the equations of motion are rather  complicated; the canonical 

momentum is 

~ ,  _ a L _ - T  ( X .  X ' ) X ' ,  - ( X ' ) 2 X ,  ' (2.15) 

0 2 ,  [(X'. 2)2  _ ( 2 ) 2 ( X , ) 2 ]  ~/2" 

The matr ix  

with the corresponding eigenvectors .~g and X tg. 

02 L 
OJc,'ok. 

- 0,,,,,1I has (for each value ofcr) two zero eigenvalues 
- O R "  

The resulting pr imary 

constraints are 

reparametrizat ions ~c, __, 5a(cr, r )  of the world-sheet as 

0(~, ~) ~ 0~-°5~ 0 ~  ~(5,~),o56 

where the first factor is the Jaeobian of the transformation.  For infinitesimal trans- 

formations &a(~r, ~') = ga  + ~a(~, r) ,  this gives 

6t~(~, ~) = ~(~, ~)- t~(~, ~) = (pa~ - wo.e~)~ + ~@.p  - ~ 8 ~  ~ 

The generalization to tensors of arbi trary rank is obvious. 
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and 

= 0  (2.16) 

17 2 + T2 X t2 "--- O. (2.17) 

They are called Virasoro constraints and play an important  role in string 

theory, as we will see later. The canonical Hamiltonian, H = --/a~dcr()( • / 7 -  

L), is easily seen to vanish identically and hence the dynamics is completely 

determined by the constraints. 

2.3 T h e  P o l y a k o v  a c t i o n  a n d  i t s  s y m m e t r i e s  

In the same way as we could express the action for the relativistic particle by 

introducing a metric on the world-line, we can introduce a metric ha~(cr, v) 

on the world-sheet and write 

Sp = _T2 / d2°'v/-~ha~OaX~OflX~'rll~v 

T fd2 v  ~ h c~ 

2 

(2.1s) 

where h = - d e t  ha~. This form of the string action is the start ing point 

of the path-integral  quantization of Polyakov [3], hence the subscript P. 

The action is easy to generalize to a string moving in a curved background 

by replacing the Minkowski metric ~//~v by a general metric g~v(X). In 

this general form the action constitutes a non-trivial quantum field theory, 

a non-linear sigma model. We will always choose g/~v = ~?/~v which can 

be considered as the first term of a perturbative expansion around a flat 

background. This is of course a severe l imitation and a complete theory 

would determine its own background in which the string is propagating, 

much in the same way as in general relativity where the metric of space- 

time is determined by the mat ter  content according to Einstein's equations. 

] /  



We now define the two-dimensional energy-momentum tensor in the 

usual way as the response of the system to changes in the metric under which 

5S "- - T  f d2crv/'hTa/35ha/3; i.e. 

T Z= 

Using 5h = -haz(Sha~)h  we find 

1 1 5S 
T ,¢~ 5ha~" 

TaB = l - l ha~h7607X~OsXt* 

and the equations of motion are 

(2.19) 

(2.20) 

TaB = 0  (2.21a) 

fih"Zo x .) = o (2.21b) 

with the appropriate boundary or periodicity conditions. Energy-momen- 

tum conservation, VaTa~ = 0, is also easily verified with the help of the 

equation of motion for X t*. Va is a covariant derivative with the usual 

Christoffel connection F~7~ = ½hT~(O~h~ + O~ha5-  O~h~/3). From the 

vanishing of the energy-momentum tensor we derive det(OaX'Ol3Xt~ ) -= 

lh(hTSOTXt, OsXtL)2 which, when inserted into Sp, shows the classical 

equivalence of the Polyakov and the Nambu-Goto action. 

We can now check that the constraints, eqs.(2.16) and (2.17), which 

were primary in the Nambu-Goto formulation, follow here only if we use 

the equation of motion Ta¢ / = 0, i.e. they are secondary. This is the same 

situation we encountered in the case of the relativistic particle. 

Before discussing the symmetries of the Polyakov action we want to 

point out that  the two metrics on the world-sheet, namely the one inherited 

from the embedding space, Fa/3 = OaXl~Ol3XUrlt~u, entering the Nambu- 

Goto action and the intrinsic metric ha~ , entering the Polyakov action, are 

a priori unrelated. The Polyakov action is not the area of the world-sheet 

measured with the intrinsic metric, which would simply be j" d2crv/h and 
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could be added to  Sp as a cosmological term (cf. below). But, for any 

real symmetric 2 × 2 matrix A we have the inequality (trA) 2 > 4 detA 

with equality for A c< 1. Choosing Aa~ = hC"rF.rB it follows tha t  Sp > 
SNG. Equahty  holds if and only if haf t ~x Fcxf, i.e. if the two metrics are 

conformaUy related. This is the case if the equation of motion for ha~ is 

satisfied. 

We can now ask whether there are other terms one could add to Sp. 
The only possibilities compatible with d-dimensional Poincar6 invariance 

and power counting renormalizability of the two-dimensional theory are 4 

S 1 "-- )k 1 / d 2 c r  x /~  (2.22) 

which is the cosmological term mentioned above, and 

fd2  $2 = (2.23) 

where R is the curvature scalar for the metric haz. $2 is the two-dimensional 

Gauss-Bonnet term, i.e. the integrand is a total  derivative and consequently 

does not contribute to the classical equations of motion. Inclusion of the 

cosmological term would lead to the equation of motion TaB = -~/2hctl3, 
from which we conclude that  AlhC'~haz = 0. This is unacceptable unless 

A1 = 0. We will thus consider the action Sp, eq.(2.18), which is the action 

of a collection of d massless real scalar fields (Xg) coupled to gravity (ha~) 

in two dimensions. 

Let us now discuss the symmetries of the Polyakov action. 

(i) global symmetries: 

• Poincar6 invariance: 

4For the open string there are in fact further possible terms besides S1 and S2, which 

are defined on the boundary of the world-sheet. It turns out that they can also be 

discarded and we will not discuss them here. 
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5 X  ~ = ag~,X ~' + b ~ (ag~, = -a~;t)  

5ha~ = 0 
(2.24) 

(ii) local symmetries:  

• reparametr izat ion invariance 

5 X  ~ = ~ O ~ X  ~ 

(2.25) 

• Weyl rescahng 

5haz  = 2Ahaz  
(2.26) 

5 X  g = 0 

Here ~a and A are arbi t rary (infinitesimal) functions of (a, r )  and ag,, and 

bg are  constants. From eq.(2.24) we see tha t  X g  is a Minkowski space 

vector whereas ha~ is a scalar. Under reparametrizations of the world- 

sheet, eq.(2.25), the Xg  are world-sheet scalars, hct ~ a world-sheet tensor 

and v ~  a scalar density of weight - 1 .  The scale transformation of the 

world-sheet metric, eq.(2.26), is the infinitesimal version of haz(cr, r)  

~2(~,  ~)h~z(~,  ~) for ~2(~,  r) = e2A(~,~) ~ 1 + 2A(~, ~). 

One immediate  important  consequence of Weyl invariance of the action 

is the tracelessness of the energy-momentum tensor: 

h~ZT~z = 0 (2.27) 

which is satisfied by the expression eq.(2.20) without invoking the equations 

of motion. It is not difficult to see that  this has to be so. Consider an action 

which depends on a metric and a collection of fields ¢i which transform 

under Weyl rescaling as ha~ ---. e2Aha~ and ¢i "--* ed~A¢i. If the action is 

scale invariant, i.e. if S[e2Ah~,.ed~A¢] -- S[h,~z, ¢], then 
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~hafl i 

If we now use the  equat ions of mot ion  for ¢i, tracelessness of the  energy- 

m o m e n t u m  tensor  is immedia te .  We note tha t  it follows wi thout  the  use of 

the equat ions  of mo t ion  if and only if d i = 0, Vi. This is for ins tance  the  

case for the  Polyakov action of the  bosonic string but  will not  be satisfied 

for the  fermionic s tr ing action in Chapte r  7. 

The  local invariances allow for a convenient  gauge choice for the  world- 

sheet metr ic  haft, called conformal  (also or thonormal)  gauge. Reparame-  

t r izat ion invariance is used to choose coordinates  such tha t  locally haB -- 

~22( Cr, ~')~a/3, wi th  rla/3 being the  two-dimensional  Minkowski metr ic  defined 

by ds 2 --- - d r  2 -b dc r2. It is not  hard  to show tha t  this can always be 

done. Indeed,  for any two-dimeasional  Lorentzian metr ic  ha~,  consider  two 

null vectors at  each point.  In this way we get two vector fields and  their  

integral  curves which we label by g+ and a - .  Then,  ds 2 -- - ~ 2 2 d a + d ~ - ;  

h++ -- h__ -- 0 since the  curves are null. Now let o ± - r 4- cr f rom which it 

follows tha t  ds 2 - -  ~ 2 ( - d 7 2 - t - d a 2 ) .  A choice of coordinate  sys tem in which 

the  two d imens iona l  Lorentzian metr ic  is conformally flat, i.e. in which 

ds 2 - ~ 2 2 ( - d r  2 -b dc r2) -- -~dcr+dcr  - (2.29) 

is called a conformal  gauge. The  world-sheet  coordinates  o + in t roduced  

above are called light-cone, i so thermal  or conformal  coordinates.  We can 

now use Weyl invariance to set ha~ = rla ft. The  components  of the  metr ic  

1 r/+- = ~7-+ - 2 ,  = = 77++ are then  ~+_ -- ~7_+ = - 2 ,  -- 7?++ 7?__ = r / - -  = 0. 

Also, cO+ - ½(cOr 4- cOg) and  indices are raised and  lowered according to 

v + - - 2 v _  and  v -  - - 2v+ .  

It is now i m p o r t a n t  to note  t ha t  reparametr iza t ions  satisfying V a ( ~  -b 

V Z ~  c( ha/3 can be compensa ted  by a Weyl resca~ng. Expressed in light- 

cone coordinates  the  conformal gauge preserving diffeomorphisms are those 
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which satisfy 0+~- = c9_(+ = 0, i.e. ~± = ~±(~z±). 5 (Here we have used 

that  V+(+ = h + _ V + ( -  = h+_c3+(- since the only non-vanishing Christoffel 

symbols in conformal gauge are F++ = 2c9+A and FZ_ = 2cO_A.) Indeed, 

instead of cr ± we could as well have chosen ~± = ~+(cr+), or, in infinitesimal 

form, ~+ = ~z ± + ~±(cr±). Note that  the transformation cr + ~ b+(~r ±) 

corresponds to (•)---* (~) 1 - +  = ~[~ (r  + o r ) + ~ - ( r - ~ ) ] ;  i.e. any + satisfying 

the two-dimensional wave equation will do the job. (This will allow us to 

go to the so-called light cone gauge icf. Chapter  3 below).) 

It is easy to see that  the conformal gauge is unique to two dimensions. In 

d > 0 dimensions a metric ha/3, being symmetric, has ½d(d+l )  independent 

components. Reparametr izat ion invariance allows to fix d of them, leaving 

l d ( d -  1) components.  In two dimensions this is enough to go to conformal 

gauge. We then still have an extra local symmetry, namely Weyl trans- 

formations, which allows us to eliminate the remaining metric component.  

This also shows tha t  gravity in two dimensions is trivial in the sense that  

the graviton can be gauged away completely. For d > 2, Weyl invariance, 

even if present as for instance in conformal gravity, won't  suffice. 6 

The argument  given above that  conformal gauge is always possible was 

a local s ta tement .  We will now set up a global criterion and consider the 

general case with gauge condition 

hag = e2¢ha/3. (2.30) 

In conformal gauge ha/3 = r/a~3. Under reparametrizations and Weyl rescal- 

ing the metric changes as 

5When we go to Euclidean coordinates on the world-sheet this corresponds to the 

conformal transformations. More about this later. 

6Note that the action for the relativistic particle was not Weyl invariant; there 

reparametrization invariance was sufficient to eliminate the one metric degree of 

Deedom. 
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ing the metric changes as 

5 h ~  = Va~l 3 + V ~ a  + 2Aha~ 3 
= (P~)aZ + 2Aha/3 (2.31) 

where the operator P maps vectors into symmetric traceless tensors accord- 

ing to 

(P~),/3 -- V~/3 + V/3~- - (VT(Y)ha/3, (2.32) 

and we have defined 2A - 2A + V . / (  r. The decomposition into symmet- 

ric traceless and trace part is orthogonM with respect to the inner product 

(~Sh(a)16h (2)) = f d2er v~ha'Yh~6Sh~)~Sh(~ The trace part of 3ha• can al- p 7 " 

ways be cancelled by a suitable choice of A. It then follows that for the 

gauge eq.(2.30) to be possible globally, there must exist a globally defined 

vector field ~a such that 

(PC)a/3 = ta/3 (2.33) 

for arbitrary symmetric traceless ta/3. If the operator P has zero modes, i.e. 

if there exist vector fields {0 such that P{0 = 0, then for any solution { we 

also have the solution ~ + {0. In this case the gauge fixing is not complete 

and those reparametrizations which can be absorbed by a Weyl rescaling 

are still allowed, as we have already seen above. The equation 

(P~)~5 = V ~  + V s ~  - h~aV~U = 0 

is the conformal Killing equation and its solutions are called conformal 

Killing vectors. The adjoint of P, p t ,  maps traceless symmetric tensors to 

vectors via 

( p t t ) .  = (2.34) 

Now, zero modes of p t  correspond to symmetric traceless tensors which can- 

not be written as (P{)a/3 for any vector field ~. Indeed, if (Plt0)a = 0, then 

for all ~a, (~,Ptto) = - (P~ , to )  = O. This means that zero modes of p t  cor- 

respond to metric deformations which cannot be absorbed by reparametriza- 

tions and Weyl rescaling. If they do not exist, the gauge is possible globally. 
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This apphes in particular to the conformal gauge; here the condition is that 

the equations O_t++ -- 0 and 0+t__ = 0 have no globally defined solutions. 

We will further discuss the solutions of these equations in Chapter 6. 

In conformal gauge the Polyakov action simphfies to 

T 
Sp  = - -~ f d2a rlal3 OaXl~O~3Xt~ 

T f d % ( 2  2 _ X'2) (2.35) 
= ~ J 

2T / d2cr O+XO_X g 

Varying with respect to X u such that ~iX~(r0) = 0 = ~XV(vl) ,  6X'(cr  = 

0, e) arbitrary (open string) and ~iX'(cr + 2~r) = 6X'(cr) (closed string), we 

obtain 

Vl ! 0"=~" 

where the surface term is absent for the closed string. We then get the 

following equations of motion: 

with 

(02 - O2)X ~ = 4O+O_X ~ = 0 

x " ( ~  + 2~) = x" (~ ) ,  

X;z o'=0,~" = O. 

(2.37a) 

(closed string) 

(open string) (2.37b) 

In both cases the equation of motion is the two-dimensional massless wave 

equation with the general solution 

X#(cr, r) -- X~(~ - )  + X~(~ +) (2.38) 

where X # R,L are arbitrary functions of their respective arguments, subject 

only to periodicity or boundary conditions. They describe the "right"- and 

"left"-moving modes of the string respectively. In the case of the closed 

string the left- and right-moving components are completely independent 
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fl)r the unconstrained system, an observation which is crucial for the for- 

mulation of the heterotic string. This is however not the case for the open 

string where the boundary condition mixes left- with right-movers through 

reflection at the ends of the string. 

We still have to impose on the solutions of the equations of motion 

the constraints resulting from the gauge fixed equations of motion for the 

metric: we have to require that  the energy momentum tensor vanishes; i.e. 

T01 = T10 = I ( X .  X ' )  : 0 (2.39a) 

Too : Tl l  : 4(-,~ "2 + X '2) : 0 (2.39b) 

which can be alternatively expressed as 

1 (2~ i X ' )  2 -- 0. (2.40) 

In light-cone coordinates the constraints become 

1 X T++ = -~0+ • O+X = 0 (2.41a) 

7'_ : I O _ X  . O _ X  : 0 (2.41b) 
- 2 

T+_ = T_+ = 0 (2.41c) 

where T++ "- ½(Too + T0a), T__ = ½(Too - To1); eq.(2.41c) expresses the 

tracelessness of the energy momentum tensor. In terms of the left- and 

right-movers the constraints eq.(2.41a,b) become X ~  = ) ~  -" 0. Energy 

momentum conservation, i.e. V a T a ~  = 0, becomes 

O_T++ + O+T_+ = 0 

O+T__ + O_T+_ = 0 

which, using eq.(2.41c) simply states tha t  

O_T++ = 0 

O+T__ = 0 

(2.42) 

(2.43) 
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i.e. 

T++ = T++((r +) and T__ = T__(¢-) .  (2.44) 

From eq.(2.39b), together with the condition that 0 ¢ X  I~ = 0 at the end of 

an open string, we learn that the ends of an open string move at the speed 

of light. 

The conservation equations (2.43) imply the existence of an infinite 

number of conserved charges. In fact, for any function f(cr +) we have 

0_(f(cr+)T++) = 0 and the corresponding conserved charges are 

L I = 2T &r f(~r+)T++(cr +) (2.45) 

and likewise for the right-movers. 

The Hamiltonian for the string in conformal gauge is 

£ H = doff2 • / / -  L) 

= T2 f0 adCr(22 + X'2) (2.46) 

= T f0a dcr((0+X) 2 + (0_X) 2) 

where, as before, the canonical momentum is H t~ = OL/O.Y(I~ = T X  t~. We 

note that the Hamiltonian is just one of the constraints. This was to be 

expected from our discussion of constrained systems in the context of the 

relativistic particle. Indeed, we saw that  the caaonical Hamiltonian derived 

from the Nambu-Goto action vanishes identically and the r-evolution is 

completely governed by the constraints, i.e. 

H = f0~ d(~{N,(G r ) / / •  X '  + N2(cr, r)(/-/2 + T2X'2)} (2.47) 

where N1 and N2 are arbitrary functions of cr and r. Using the basic equal 

r Poisson brackets 

{x,(~,  ~), x ~ ( J ,  ~)}~.,. = {u,(~,  ~), u~(~ ', ~)}~.~. = 0 
(2.4s) 

( x . ( ~ ,  ~), ~ ( ¢ ' ,  ~)}~.~. = , ~ ( ¢  - J )  
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we find 

and 

J ~  = N I X  '~ + 2N2H~ (2.49) 

[--[tL = Oo.(N1H~ + 2T2N2X,g).  (2.50) 
If we chose N1 = 0 and N2 = 1 eqs.(2.49) and (2.50) lead to the equation 2-T, 
of motion (02 _ 02)Xtt = 0 which we have obtained previously from the 

action in conformal gauge. This means that choosing N1 = 0 and N2 -- 2~ 

corresponds to fixing the conformal gauge. With this choice for the functions 

N1 and N2 we also get the Hamiltonian eq.(2.46). 

In conformal gauge the Poisson brackets are 

{x~(~ ,T) ,x~(J ,  r)}~.~. = (x~(~,r) ,x~(J ,~)}~.~.  = 0 
(2.51) 

1 v (x , (~ ,  T), :~(~ ' ,  ~)}~.B. = ~ 6(~ - J ) .  

Using them and the explicit expression for T++ we can readily show that 

the charges Ly of eq.(2.45) generate transformations cr + -+ a+ + f(cr+), i.e. 

those reparametrizations which do not lead out of conformal gauge. Indeed, 

{Lf,X(o')}p..s.  = - f (o '+)O+X(a) .  (2.52) 

So far we have only discussed issues connected with world-sheet symme- 

tries. However, invariance under d-dimensional global Poincar~ transforma- 

tions, eq.(2.24), leads, via the Noether theorem, to two conserved currents; 

invariance under translations gives the energy momentum current 

C, = -T~h~OzX. ,  (2.53) 

whereas invariance under Lorentz rotations gives the angular momentum 

current 

JZau = - T v / - h h a g ( X ,  cgaX~,- XvcgaXtL ) = Xt~Pu a - X v P  z .  (2.54) 

Using the equations of motion it is easy to check the conservation of P~ and 

Jt~au. The total conserved charges (momentum and angular momentum) are 
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obtained by integrating the currents over a space-like section of the world- 

sheet, say v - 0. Then the total momentum in conformal gauge is 

fo" (2.55) P~: d~P~:T 

and the total angular momentum is 

It is easy to see that P ,  and J/zu are conserved. Indeed, ~ = jfo%Cr c92X, = 

which vanishes for the closed 

string by periodicity and for the open string because of the boundary condi- 

tion. Hence our earlier statement that the open string boundary conditions 

have the physical interpretation that no momentum flows off the ends of the 

string. Conservation of the total angular momentum is also easy to check. 

With the help of the Poisson brackets eq.(2.51) it is straightforward to 

verify that  P~ and j ~ u  generate the Poincar~ algebra: 

{ P~ ,  P u }  p.B. = O, 

{ p ~ ,  jpo.}p.m = rl~O'pp _ ~appo" , (2.57) 

{ j # v ,  jpo.} p.m = u#p jv'o" -F rlu°'Y ~p - UuP J ;*°" - rl~°" Y vp • 

2.4 Osc i l l a t o r  e x p a n s i o n s  

Let us now solve the equations of motion, taking into account the boundary 

conditions. We will do this for the unconstrained system. The constraints 

then have to be imposed on the solutions. We have to distinguish between 

the closed and the open string and will treat them in turn. 
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(i) closed string 

The general solution of the two-dimensional wave equation compatible with 

the periodicity condition XtZ(cr, v ) =  X~(cr + 2~r, v) is (cf. eq.(2.38)) 

x~(o-, ~-) = x~(~- - o-) + x~(~- + o-) (2.58) 

where 

i 
X~(~" - cr) = ~x~ + 4-~Fu(v - cr) + ~ n~O la~e-in('r-°')n r~ (2.58a) 

with arbi trary Fourier modes an ~ and ~n ~. Our notat ion is such tha t  the a~n 

are positive frequency modes for n < 0 and negative frequency modes for 

n > 0. The normalizations have been chosen for later convenience• The 

requirement tha t  X~(cr, ~-) be a real function implies that  x~ and p/~ are 

real and tha t  

If we define c~0 ~ : 6~ : - -~-fp~,  we can write 

• 1 +oo 
o - x ~ = x ~ - / - i ~  E ~ e-~'~(~-~) (2.6oa) 

'r$.~---~O0 

• 1 + c ~  o+x~=x~-/~ E a~ e-~r~('+~) (2.60b) 
r t , ~ - -  O 0  

from which we find that  

f02~r P ,  = T d~ 2 ~ ( ~ )  = p" (2.61) 

i.e. p~ is the center of mass momentum of the string• From 

1 fO 2~r - -  dgX~(cr, v = 0) = x/~ (2.62) 
27r 

we learn tha t  x/~ is the center of mass position of the string at r = 0. Also, 

using the expression for the total  angular momentum, we find 
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f0 
27r 

(2.63) 

with 

and 

l ~u = x~p u _ zUp~ (2.63a) 

E" ~ - i  E (a"_n~ " " = - a _ n a n )  (2.63b) 
n = l  

with a similar expression for/~t~u. From the Poisson brackets eq.(2.51) we 

easily derive the brackets for the a ~n, On ~, xt~ and pt~: 

~n}~.B. { ~ ,  = --im~r~+n~ '~ (2.64a) 

{ ~ ,  c~ } e.B. = 0 (2.64b) 

{ x~, pU } p.s. = ~?uu (2.64c) 

where we have introduced the notation 5m = 5m,o. x~ and p~, the center of 

mass position and momentum, are canonically conjugate. The Hamiltonian, 

expressed in terms of oscillators, is 

1 +c~ 
H = ~ Z (a-n "an + ~-n" ~n). (2.65) 

We have seen above that  the Virasoro constraints in conformal gauge 

are simply T++ -- 0 and T__ = 0 and that  the conservation of energy- 

momentum gives rise to an infinite number  of conserved charges eq.(2.45) 

with a similar expression for the right:movers. We now choose for the func- 

tions f(cr ±) a complete set satisfying the periodicity condition appropriate 

for the closed string: fm(O "+) = exp(imcr +) for all integers m. We then 

define the Virasoro operators as the corresponding charges at r -- 07: 

7Since the constraints  are first class and Hcaa = O, it is clear that  they are constant 

in r (up to the constraints); this is indeed easily verified. 
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27r 
Lm = 2T /0 do" e-im°'T_ 

- -  T fo 2'~do" e-im~(O_X)2 
1 

= ~ E O~m-n • o~n, (2.66a) 
n 

fO °r e+im,zT+ + Lm = 2T do" 

- -  T fO 27rdo" e+im~r(O+X)2 

1 
= ~ n~ a m - n '  an. (2.66b) 

They satisfy the reality condition 

L n -  Lt-.n , Ln - Ltn._ (2.67) 

Comparing with eq.(2.65) we find that the Hamiltonian is simply 

H = L0 + L0. (2.68) 

Tile general v evolution operator would have been H = ~n(cnLn + cnLn); 

the choice implied by eq.(2.68), cn = cn = 5n corresponds to the conformal 

gauge. Using the basic Poisson brackets it is easy to show that the constraint 
r 2 ~ r  . ! _ 

TJO do'X.X = (Lo-Lo) generates rigid g-translations. (This can already 

be seen from eqs.(2.47), (2.49) and (2.50).) Since on a closed string no point 

is special, we need to require that L0 - L0 = 0. It is through this condition 

that the left-movers know about the right-movers. The Virasoro operators 

satisfy an algebra called the Virasoro algebra: 

{Lm, Ln}p.B. = - i ( m  - n)Lm+n, 

{Lm, Ln}p.B. = - i ( m  - n)Lm+n, (2.69) 

{Lm, nn}p.B. : 0 .  

It is straightforward to verify. This algebra is nothing but the Fourier 

decomposition of the (equal r) algebra of the Virasoro constraints: 
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{T__(~), T__ (J)}~. , .  = - - -  

{T++(~), T++(J)}p. , .  = 

1 {T__(o') + T _ _ ( G ' ) } O ~ ( G  -- G') 
2T 

~ { T + + ( ~ )  + T++(~')}a~(~ J ) ,  (2.70) 

{r++(~), T__(J)}~.~. = 0. 

It is useful to recognize that  if we replace the Poisson brackets by Lie brack- 

ets, a realization of the Virasoro algebra is given by the vector fields La = 

ein°'+O+ and L n  = e in° ' -O- .  They are the generators of the reparametriza- 

tions cr + + cr 4" + fn(cr+). It we define the variable z = e i°'- E S 1, we get 

Ln - izn+lOz, which are reparametrizations of the circle S x. 

(ii) open string 

Here we have to impose the boundary condition X t~ = 0 at the ends of the 

string, i.e. at cr = 0 and a = rr. The general solution of the wave equation, 

subject to these boundary conditions, is 

X.(~, r) = z~' + p~r + v / ~  

from which we get 

o±x" = ~(2" + x ' " ) -  1 

2 , / ~  z 

1-a~e-in" (2.71) rl, n COS nO" 

- ~ o o  

Z ~-~'~(~-~) (2.72) 
?'t------(30 

where we have defined a0 ~ = 1 /~ As in the case of the closed string we 4 ; f P "  
easily show tha t  x ~ and p~ are the center of mass position and momentum 

of the open string. The total  angular momentum is given by 

]gu : lgu + E#U (2.73) 

with l~U and E~u as in eqs.(2.63a) and (2.63b). We again find 

{a~, a~ } p.s. = --imSr~+~r/~ 

{z,,p~}p.~. = ~,~. 
(2.74) 

In terms of the oscillators the Hamil tonian for the open string is 
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1 +~x~ 
H=-~ E a-n'C~n. (2.75) 

n ~ - - O G  

The open string boundary conditions mix left- with right-movers and con- 

sequently T++ with T__. We define the Virasoro operators for the open 

string as 

Lm = 2T fo~dCr (eim°'T++ +e-im°'T__) 

T 7r 

T 
= -i- d eim (£" + 

(2.76) 

1 +c~ 
~-~ E C~'m-n'O~n. 

- - 0 0  

Note that  in the third line we have extended the integration region from 

0 < cr < rr to the interval -~r < ~ < +Tr on which the functions e ima 

are periodic. This is possible since Xt~(cr) = - X t ~ ( - a ) .  The Lm are 

a complete set of conserved charges respecting the open string boundary 

conditions. Comparison with eq.(2.75) gives 

= L0, (2.77) 

which, as in the closed string case, reflects the fact that  we are in conformal 

gauge. The Lm satisfy the Virasoro algebra 

{Lm, Ln}p.B. ----- --i(m -- n)Lm+n. (2.78) 

2.5 Examples of classical string solutions 

At the end of this chapter let us try to get some understanding for the solu- 

tions of the classical string equations of motion subject to the constraints. 
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Since in conformal gauge the coordinate functions X~ satisfy the wave equa- 

tion, we can use the remaining gauge freedom to set X ° = t = aT for some 

constant a. The X z, i = 1 , . . . , d -  1 then satisfy 

with solution 

-a )x =0 (2.79) 

xi( , = ½ai(  + (2.8o) 

The constraint  )~ .  X r -- - ) ( ° X t °  + j ( i x t i  - -  0 leads to a t2 -:-- b t2 and 

t z t2 b /2)  ~;2. X-2 + Xl2 = 0 to ~ (a + = Combined this gives 

P2 br2 ~;2. (2.81) a ---- ---- 

The simplest example of an open string is given by (0 < g < re) 

X l = L c o s a c o s r  X ° = t = L r  

X 2 = L cos a sin ~- (2.82) 

x i = o ,  i = 3 , . . . , d - 1  

which clearly satisfies the constraints and the edge condition. It describes 

a straight string of length 2L rotating around its midpoint  in the (X 1, X2) - 

plane. Its tota l  (spatial) momentum vanishes and its energy is E = p0 _ 

LrcT from which we derive the mass M 2 --- -P~PI~ - (L~rT) 2" The angular 

1 2 c~tM2 momentum is J - J12 = ½L27rT and we find that  J = 2~--TM _-- 

This is a straight line in the (M 2, J)  plane with slope a t - (2~rT) -1,  called 

a Regge trajectory. It can actually be shown that  for any classical open 

string solution J < ciIM 2. (In the gauge chosen here and in the center of 

mass frame j 2  __ ½Jij j i j ,  i , j  = 1 , . . .  , d -  1.) 

For the closed string (0 < ~ _< 2~r) the periodicity requirement leads 

to a(cr + 27r) -- a(cr) and b(~ q- 27r) ---- b(cr). From X(cr q- 7r, v q- 7r) -- 

la(cr q- v + 2zr)q- ½b(q -  T) ---- l a ( a  q- v) + ½b(~-  v) we find that  the period 

of a closed string is ~r. For an initially static closed string configuration, i.e. 

one tha t  satisfies X(cr, r = 0) -- 0, we find X(cr, r) = ½(a(~ q- r ) + a ( c r -  r)) .  
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~- X ( . ,  ~) = X ( .  + ~r, ~), the loop doubles After half a period, i.e. at r = 2, 

up and goes around itself twice: x(.) = X(. + 7r). A simple closed string 

configuration is 

X l =  ½R(cos(.  + r ) +  c o s ( . -  r ) )  = R c o s . c o s t ,  

X 2 = ½R(sin( .  + r)  + s in ( .  - r ) )  = R s i n . c o s  r ,  (2.83) 

t = R r .  

At t = 0 it represents a circular string of radius R in the (X 1, X2)-plane, 

centered around the origin. Its energy is E = 2~rRT. Linear and angular 
71" momentum vanish. At r = y it has collapsed to a point and at t = ~r it 

has expanded again to its original size. Similar to the open string case, 

one can show tha t  a general classical closed string configuration satisfies 

J _< ~ d M  2. 

The slope parameter  c~ I or, equivalently, the string tension T are the 

only dimensionful parameters in the theory. To simplify notat ion we will 

choose a system of units where a t = ½ or, equivalently, T = 7r! for the 

open string and a I = 2 or T = 1__ for the closed string. We can then, 4~r 
if necessary, reintroduce unambiguously powers of a t to get dimensionally 

correct expressions. 
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Chapter 3 

The Quantized Bosonic String 

The quantization of the bosonic string, which is the subject of this chapter, 

will lead us to the notion of the critical dimension (d - 26). Its discov- 

ery was of great importance for the further development of string theory. 

The first indication that d = 26 plays a special role appeared in a paper by 

Lovelace [1]. Goddard, Goldstone, Rebbi and Thorn [2] quantized the string 

in light-cone gauge and showed that the quantum theory is Lorentz invari- 

ant only for d = 26. The decoupling of negative norm states (ghosts) in the 

critical dimension was shown in two different proofs of the no-ghost theo- 

rem by Srower [3] and Goddard and Thorn [4]. The modern path integral 

quantization started with the paper by Polyakov [5]. 

3.1 C a n o n i c a l  q u a n t i z a t i o n  of  t h e  boson ic  s t r i ng  

In this section we will discuss the first quantization of the bosonic string 

in terms of operators, i.e. we will consider the functions X~(cr, 7") as quan- 

tum mechanical operators. This is equivalent to the transition from clas- 

sical mechanics to quantum mechanics in first quantization via canonical 

commutation relations for the coordinates and their canonically conjugate 

momenta. We replace Poisson brackets by commutators according to 

{ }P.B. 1 , ] (3.1) 

In this way we obtain 1 

1Our notation is the same for quantum as for classical quantities. Only when confu- 
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[x,(~, T),2~(~',~)] = T , , ~ a ( ~ -  ~'), 
(3.2) 

[x,(~, ¢), x~(~ ', ¢)1 = [k,(~, ¢), 2~(¢ ', ¢)] = 0. 

The Fourier expansion coefficients in eqs.(2.58) and (2.71) are now operators 

for which the following commutation relations hold: 

[ ~ ,  ~g] = [a~ ,  ~K] = m e m + . . .  ~ (a.a) 

-/~ lx [~m, ~d =0. 

For the open string the C)~m are of course absent. The hermiticity condi- 

tion (2.59) is still valid, now following from the hermiticity of the operators 

X/~(cr, r ) .  If we rescale the a~m'S and define a~m - 1 . atrn~ _ 1 a "  
~ a ~ '  - v ~  - ~  

(m > 0), then the a ~  satisfy the usual harmonic oscillator commutat ion 

relations [a~ ,a~  "t] = 6m,nrll~V. From (a_,,~a,.,,)a+,,., = oe.+.,,,(a_,,.,a,,~ :t: rn) 

we find tha t  the negative frequency modes a,~, m > 0 are lowering op- 

erators and the positive frequency modes am, rn < 0 are raising opera- 

tors. The corresponding number operator for the m ' t h  mode (rn > 0) is 

Arm =: a,~a_,~ := a_,~am where the normal ordering symbol means tha t  we 

put negative frequency modes to the right of positive frequency modes. One 

now defines the oscillator ground state as the state which is annihilated by 

all the lowering operators. This does not, however, completely specify the 

state; we can choose it to be an eigenstate of the center of mass momentum 

operator with eigenvalue p~. If we denote this state by [0; p~}, we have 

~[O,p,> = o for m > o 
(3.4) 

~10,P'> = V~lo,~>. 

But we do have a problem now. Since the Minkowski metric r//~V has 

~oo = -I, we get [C~°m, a°rn] = [C~°m, c~] = - m  and states of the form 

sions are possible do we denote operators  by ha t t ed  symbols.  
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C~°ml0} with m > 0 satisfy (01a°m a°ml0)  = -rn{010} < 0; i.e. these states 

have negative norm. They are called ghosts 2. Negative norm states are 

bad news since they are in conflict with the probabihstic interpretation of 

quantum mechanics. However, just  as we had to impose the constraints 

on the solutions of the classical equations of motion, we have to impose 

them, now as operators, as subsidiary conditions on the states. We then 

hope that  the ghosts decouple from the physical Hilbert space. Indeed, one 

can prove a no-ghost theorem which states that the ghosts decouple in 26 

dimensions (i.e. d = 26) if the normal ordering constant to be discussed 

below is -1 .  We will not prove this theorem here, but instead arrive at the 

same consistency conditions by different means (c.f. below and Chapter  5). 

Let us now determine the propagators for the fields Xg(~r, 7"). As usual, 

we define them as 

<x.(¢ ,  7.)x~(¢ ', 7.')) = T[X"(¢, 7.)X~'(J, ¢)1 - N[X.(~, 7.)X~'(J, ¢)1 
(3.5) 

where T denotes time-ordering and N normal ordering. Zero modes need 

special care. We define :pVx,U := xgpV. This corresponds to the choice of 

a translationally invariant in-vacuum pg]0) = 0. If we define the variables 

(z, ~') = (e i ( r -¢) ,  e i(r+°')) E S 1 x S 1 we find for the closed string (7" > 7.,)3 

1 t ~v ( X ~ ( G r ) X ~ ( o " , 7 . ' ) ) =  41-a '~Tg~' ln~-~a,  l n ( ~ ' - ~ ' )  (3.6a) 

1 , ttVln(z z') (3.6b) <x~(,,, 7.)x~(~',  ¢) )  = ¼~' , ,~ lnz-  ~ ,  - 

{X~(rr, r )X~  (o", "r')) = - l a ' r / " ~ '  In z (3.6c) 

2These ghosts are not to be confused with the Faddeev-Popov ghosts of Section 3.4. 

3In Chapter 4 we will make a Wick rotation to a Euclidean world-sheet and z and 2 

will be complex conjugates of each other. 
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and 

(x~ (~ ,  ~ )x~ (~ ' ,  ~')> = - ] ~ ' , . ~  In (3.6d) 

( x . ( ~ , ~ ) x ~ ( ~  ',,')> = 1 , .~( ln(z  ~') + ln (~  ~')) (3.7) --~o~ 77 -- -- . 

The non-vanishing of eqs.(3.6.c,d) is due to the fact that  )EL and X R have 

common zero mode operators. If we define fields 

X ~ ( z )  = x~R - ip~ R in z + oscillators 
(3.8) 

x~ (~ )  = ~ - ip~ ln~ + oscmators 

where 

but 

we find 

(3.9a) 

(3.9b) 

(x~(~,  ~)xz(~ ' ,  ~')> = - , . ~  In(~ - ~') 
(3.10) 

(x~ (~ ,  ~ )x~ (~ ' ,  ~')> = - , . ~  In(z - z') 

and vanishing cross terms. Here we have set a I = 2. We note tha t  the 

propagators for XL + X R  are the same in both cases. Treating left-and 

right-movers as completely independent fields will be the key ingredient for 

the construction of the heterotic string, which we will discuss in Chapter  

10. Finally, for the open string propagator we find 

l~'{in(z-z')(~-~')+~(z-~'l(~-z')} (3.11) ( x , ( ~ ,  ~)x~(~  ', ~')) = -~ 

Let us now turn  to the constraints. In the classical theory they were 

shown to correspond to T++ = T__ = 0 or, expressed through the Fourier 

components, Lm = Lm = 0 (in the open string case the Lm's are absent). 

However, in the quantum theory any expression containing non-commuting 

operators is ill-defined without specifying an operator ordering prescription. 
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This applies in particular to L0. (The other Lrn's are safe.) Classically it 
1 +c¢ 

was given by Lo = ~ ~ a_,~o~,~. In the quantum theory we define the 

Lm's by their normal ordered expressions, i.e. 

1 +c~ 
Lm = -~ E "am-n'o~n" (3.12) 

and, in particular 

OO 

L0 = 2 + (3.13) 
n = l  

We then include an as yet undetermined normal ordering constant a in all 

formulas containing L0, i.e. we replace L0 by (L0 - a ) .  We now have to 

determine the algebra of the Ln's. Due to normal ordering the calculation 

has to be done with great care; the details can be found in the appendix to 

this chapter. We find the Virasoro algebra 

c 2 
[Lm,Ln] -'- ( m -  n)Lm+n + -~m (m  - 1)6m+n. (3.14) 

c is called the central charge. The term proportional to c arises as a quantum 

effect. Here, c = r / ~  = d is the dimension of the embedding space, i.e. the 

number of free scalar fields (on the world sheet). This means that  each free 

scalar field contributes one unit  to the central charge. In later chapters we 

will derive the contribution of other fields, such as free world-sheet fermions 

and Faddeev-Popov ghosts, to the central charge. 

Note tha t  the term in the anomaly linear in m can be changed by 

redefining Lm --~ Lm - O~6m which leads to an anomaly ( ~ m  3 + (2a - 

~)m)6m+n.  This shift also changes the normal ordering constant to a --. 

a - ~. Only the relation between the normal ordering constant and the 

linear term in the anomMy has an invariant meaning. The quantum version 

of the Virasoro algebra in the form of eq.(2.70) is (for a '  = 2) 

35 



i T r c  , ,  3 , . ,  
[T++((7),T++(J)] = 2~ri{T++(cr) + T++((r')}O~rS(a - J )  - ---~-a~o~o" - o") 

i T r c  ,-,3 , . ,  [T__ (or), T__ (J)] = -27ri{T__(a)+ T__(a')}0~5(~- J)+ -~-0$o~-a t) 

IT++ (~), T__ (J)] : 0 

(3.15) 

c It is now easy to see tha t  even which corresponds to the choice a -- 24" 

though in the classical theory the constraints are Lra "- O, V m ,  this cannot 

be implemented on quantum mechanical states I¢) since 

<¢[[Lm, L-re l iC)  = (¢[2mLo[¢) + din(m2 - 1)(¢1¢) 

i.e. we cannot  require Lm[¢)  : 0, Vm. The most we can do is to demand 

that  on physical states 

nm[phys) -- 0 

(n0 - a)[phys) --- 0 

m > 0  (3.16a) 

(3.16b) 

i.e. the positive frequency components annihilate physical states. This 

is consistent since the L m  for m > 0 form a closed subalgebra, and the 

requirement Lm[phys} = 0, for m > 0 only, effectively incorporates all 

constraints since with L m  = L t -m  we find tha t  4 

(phys'[L,~[phys) - 0 V n # 0. 

For the closed string we have in addition the Lm's. 

Virasoro algebra and commute with the Lrn'S. 

eq.(3.16) also for the Lm's and in addition 

(Zo - to)lphys)  = O. 

(3.17) 

They also satisfy a 

We impose the conditions 

(3.18) 

4Note that the situation is very similar to the one in the quantization of electro- 

magnetism. There we can only impose the positive frequency part of the gauge 

condition 0.  A = 0 on physical states which suffices to get (phys ~ 1O. Alphys ) = 0. In 

this restricted Hilbert space longitudinal and scalar photons decouple. 
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The reason for this constraint is that  the unitary operator 

U~ = e i~(L°-L°) (3.19) 

satisfies 

u~x,(~,~-)u~ = x~(~ +~,~) (3.20) 

as is straightforward to show; i.e. it generates rigid ¢ translations. This 

already follows from our discussion in Chapter  2 of the motions generated 

by the constraints. Since no point on a closed string should be distinct, 

we have to impose eq.(3.18). (This also follows from eq.(3.16b) and the 

equivalent condition for L0 if a = ~.) 

For the open string L0 = ~n=lO~_nOO ~ a~n + o/p~p~ and p#p~ : - m  2. 

Then the condition ( L 0 -  a)[phys) = 0 implies that  ( ~ n = l  - n  " a n -  

a)[phys} = ~tm21phys); hence condition (3.165) is called the mass-shell 

condition and the mass operator for the open string is 

~,m2 = (N  - a) (3.21) 

where we have defined the level number N as 

N"- E Nm-- E a_m.am. 
m > 0  m > 0  

For closed strings we find from L0 -- ~ a~ - n  a~ n + 4 p2 and the 
n = l  

ing expression for Lo 

= + r 4  

(3.22) 

correspond- 

(3.23) 

where 

and 

o~'m] =2(N- ~) 
(3.24) 
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as a consequence of L0 - L0 = 0. We see that  in both cases the mass of the 

ground state (N = N) is determined by the normal ordering constant. 

We want to note that  the normal ordering constants in the expressions 

for the angular momentum operators drop out and one easily verifies the 

Poincar@ algebra (2.57) as an operator algebra, after replacing the Poisson 

brackets by commutators.  

3.2 L i g h t  c o n e  q u a n t i z a t i o n  o f  t h e  b o s o n i c  s t r i n g  

It is now possible to choose a gauge, called the light cone gauge, in which 

the Virasoro constraint equations can be solved explicitly and the theory 

can be described in terms of physical degrees of freedom only. However, 

light cone gauge is a non-covariant gauge. But, since the formulation in 

light cone gauge is obtained from a manifestly Lorentz invariant theory 

via gauge fixing, one might expect that  d-dimensional Lorentz invariance is 

automatic ( though not manifest). However, as we will see shortly, this is 

true in the quantum theory only if d = 26 and a = 1. 

In going to light cone gauge we use the residual gauge freedom tha t  was 

left after fixing the conformal gauge by choosing r c< X +. The constant 

of proport ionali ty will be determined shortly. The light cone coordinates 

are defined to be X + = 1 0 x d - 1 )  v~(X i and X i , i  = 1 , . . . , d - 2 .  The 

X i are the transverse coordinates. The scalar product  in terms of light 

cone components is V • W = v i w  i - V + W  - - V - W  + and indices are 

raised and lowered according to V + = -V_ ,  V-  = -V+ and V i = ~ .  To 

go to light cone gauge is possible since the X t~ satisfy the wave equation. 

(Cf. the discussion in Section 2.3.) Let us now determine the constant of 

proportionality. From eq.(2.55) we find 

X+ = ~ a ' p+r  (closed string), 
(3.25) ( 2alp+r  (open string). 
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This  means  t h a t  c~ + = an  + -- V~-P n for the closed s t r ing and  ~+ - 

2x/~p+(Sn for the  open string. W i t h  this  identif icat ion the cons t ra in t  equa- 

tions (X ~ 4- Xt~)  2 -- 0 become 

1 (o+x )Z 
O±X- = 

1 (O±Xi)2 

(closed str ing),  

(open string);  
(3.26) 

i.e. we can solve the X -  in te rms  of the X i so t ha t  in fight cone gauge 

bo th  X + and  X -  are e l iminated,  leaving only the t ransverse  components  

X i as independen t  variables. We can now express a~  in te rms of the  i OL n • 

Expand ing  eq.(3.26) in Fourier modes  we find 

1 + o c )  

m = - - o o  

1 + o o  

7 7 ~ - - - - - - - 0 0  

• i .  

- i  - i  --2aSh) • O ~ n _ r n C t r  n : 

(3.27) 

for the  closed s t r ing and 

1 +oo  

_ • O ~ n _ r n O ~ r n  • 

m ~ - - o o  

for the  open string.  Here we have again in t roduced  a normal  ordering 

constant .  The  mass  operator  is now obta ined from m 2 -- (2p+p - - pipl) by 

use of the  re la t ion between p~ and  c~0 ~ and  the expression for c~ o in te rms  

of the  t ransverse  oscillators. We obta in  

m2 ~t{~-]~ i i + - i  - i  2a} 
( Ol _ n O~ n - -  O l r ~ O L n  - -  

n > 0  

for the  closed str ing,  and 

- - -  O~ ;q ,O~ n - -  

n > 0  

(3.29) 

(3.30) 
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for the open string. This also follows directly from the covariant expressions 

since in light cone gauge a + = ~+ = 0 for n ¢ 0. The normal ordering 

constants in eqs.(3.27) and (3.28) are the same as the ones in eqs.(3.21) and 

(3.24). 

The action in light cone gauge is simply the restriction of the covariant 

action eq. (2.35) to the independent physical (transverse) degrees of freedom: 

Sl.c. = f d2 ((2i)2 - (X'i)2) (3.31) 

The canonical Hamiltonian following from the light cone action is 

1 +co 
" - "  - -  " a _ n a  n : - - a  

H 2 ~ i i 
n . . ~ - - - O 0  

- 2 ~ t ,  j + N - a  

for the open string, and 

1 +c~ 

n.-."':-, - - 0 0  

i i - i  - i  
: ( a _ n a  n + a _ n a n )  • - 2 a  

= ( # ) 2  + N + 2a 

(3.32) 

(3.33) 

for the closed string. Note that these expressions do not follow by substitut- 

ing (3.27) and (3.28) into eqs.(2.65) and (2.75). This would give vanishing 

results since the covariant Hamiltonian is just one of the constraints and 

eqs.(3.27) and (3.28) solutions of them. 

3.3 S p e c t r u m  of  t h e  bosonic  s t r i n g  

Next let us look at the spectrum of the theory. The states are generated 

by acting with the transverse oscillators on the oscillator ground state. We 

have to distinguish between open and closed strings and will discuss them 

in turn. 
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open string spectrum 

The ground state IO,p i) is unique up to Lorentz boosts. Its mass is given by 

its eigenvalue of the mass operator o/m2tO,p i) = -aIO,pi). The first excited 

state is c~/_1 [0,/P'); it is a d -  2 dimensional vector of the transverse rotat ion 

group SO(d - 2). Lorentz invariance requires that  physical states fall into 

representations of the little group of the Lorentz group S O ( d -  1, 1), which 

is S O ( d -  1) for massive particles and S O ( d -  2) for massless particles. 

Above state is a vector of SO(d - 2), i.e. it must be massless. Acting on it 

with the mass operator we get 

o = ~ ' = ~ ( ~ t , j o , / ) )  = ( ~ -  ~)4~10,g)  (3.34) 

i.e. space-time Lorentz invariance requires that  the normal ordering con- 

stant be a = 1. Recall that  it arose from normal ordering the expression 

E ~-n O~ni i appearing in c%. We write 
n#0 

(X) 

i o~.i i i E ~_~ ~ = E • ~ _ ~  . + ( d -  2 ) E ~  
n ~ 0  n ~ 0  n = l  

O0 O0 

- ~_,~,~ + - - ~  E n}. 
n = l  n = l  

(3.35) 

The last sum in this expression is however undefined 

larized. We do this using ~-function regularization. It can 

regularization respects modular invariance, an important  
OO 

tion to be introduced in Chapter  6. Consider the sum 
n = l  

and must be regu- 

be shown tha t  this 

consistency condi- 

n - s  = ¢(s), where 

~(s) is Pdemann's zeta function. It converges for s > 1 and has a unique 

analytic continuation at s = - 1  where it has the value 4 ( -1 )  = -1 /12 ,  
d - 2  i.e. a --~-2-U" From Lorentz invariance we have found above tha t  a = 1, 

which tells us that  d = 26. To summarize, Lorentz invariance of the quan- 

tized bosonic string theory requires a = 1 and d = 26. A more rigorous 

argument, which also relies on Lorentz invariance, is to check the closure 
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Table 3.1: The five lowest mass levels of the oriented open bosonic string 

level at(mass) 2 

0 - 1  

1 0 

2 +1 

3 +2 

4 +3 

states and their 

SO(24) representation contents 

little representation contents 

group with respect to the 

little group 

Io) 
• s o ( 2 5 )  

(1) (1) 

~Lllo) [ ]  
[ ]  S0(24) 

(24) (24) 

mL210) mLlm£1tO) I-T-I 
[ ]  FT-I+. !S0(25) 

(24) (299)+(1) (324) 

VI [ ]  FI + i--I--I + • I - [ - I - I  + [ ]  so(25)  + 
(2900)  (300) 

(24) (276) .1. (299) .1. (1) (2576) .1. (24) 

[-1 [-I--]+~]+ • [--I-7+, (20150) + (5175) 
(24) (299).1.1.(276).1.(1) (299).1.(1) 

so(25) 
° ' L 2 ° ~ ' ~  I°) ~ °C~ °'L~ °'~-~"L~ I°) I--FI • 

2 x [-'] -I- r - ] - r -1  + [ - i  L--J [ -TT - ] - - I  + [--r-]  + • .1. ,1, (324) (i) 
2 x (24) + (2576) .1. (4576) (17250) .1. (299) 4- (1) 

of the Lorentz algebra; the commutator  [M i-, MJ-] is critical. In contrast 

to the Lorentz generators in covariant gauge, M i- contains normal ordered 

expressions due to the appearance of c ~ .  The actual  calculation of the 

commutator  is quite tedious and will not be presented here. A simple con- 

42 



sequence of a = 1 is tha t  the ground state satisfies ~trn2 = - 1 ,  i.e. it is 

a tachyon. The presence of a tachyon is not necessarily a fatal problem 

for the theory. It means that  the ground state is unstable and some other, 

stable ground state might exist. Another way to get rid of the tachyon 

is to introduce anticommuting degrees of freedom whose normal ordering 

constant cancels tha t  of the commuting degrees of freedom of the bosonic 

string. This is indeed what is done in the superstring theory. In table 3.1 

we have collected the light cone states of the open bosonic string up to the 

fourth level. It is demonstrated how, for the massive states, the light cone 

states, which are tensors of SO(24), combine uniquely into representations 

of SO(25). It can be shown that  this occurs at all mass levels and to de- 

pend crucially on the choice a = 1 and d = 26. Since at level n with mass 

o/m 2 -- (n - 1) we always have a state described by a symmetric tensor of 

rank n we find tha t  the maximal spin at each level is jmax = n --- c~trn 2 + 1. 

In general the states will satisfy j < c~tm 2 + 1 and, since j and m 2 are 

quantized, all states lie on Regge trajectories, with the tachyon lying on the 

leading trajectory. 

closed string spectrum 

Since in the case of the closed string we can excite both left- and right- 

moving degrees of freedom, its states are simply tensor products of the 

open string states, subject to the constraint L0 - L0 = 0. 

This simply means that  the excitation level in both sectors has to be 

the same. The ground state is again a scalar tachyon 10) with mass c~trn 2 = 

- 4 a .  The first excited state is c~i-16fl-1[0) with mass c~tm 2 = 4(1 - a). We 

can decompose this state into irreducible representations of the transverse 

rotation group SO(d-2), the little group for massless states in d dimensions, 

as follows: 

• • ,~,[i j ]  rc~(i j )  ~_.LSijc~I¢ ~k OLZ 1 ~3110) _ 1 1 o ) + t  -1 - 1 -  -1 _1 1o) (3.36) 
+ 
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Table 3.2: T h e  th ree  lowest  m a s s  levels of the  or ien ted  closed bosonic  s t r ing  

level a ' (mass)  2 

0 - 4  

1 0 

2 +4 

s ta tes  and their  little 

SO(24) representat ion contents  group 

representation contents with 
respect to the little group 

IO> 
• s0(25) 

(1) (1) 

Fq × F-I 
(24) (24) 

so(24) 

so(25) 

E:] x E] ( ~ +  •) x (F~+.)  
(24) (24) (299) + (1) (299) + (1) 

E]x (fT]+ •) (I-V1+ •) x O 
(24) (299) + (1) (299) + (1) (24) 

X X 
(299) (276) (1) 

m r-n m 
(324) (324) (20150) (32175) 

m £ . + ~ +  + + 
(52026) (324) ( ) (1) 

where indices in parentheses and brackets are symmetrized and anti-sym- 

metrized, respectively. As for the open string we conclude that  a = 1 

and d = 26. Then these states describe a massless spin two particle, an 

antisymmetric tensor and a massless scalar. The spectrum for the first 

three levels is displayed in table 3.2. Again, the massive states combine 

into representations of the little group SO(25). The relation between the 

maximal spin and the mass is now jmax - ½ c/m2 + 2. 

One can now distinguish between orientable and unorientable strings. 

The concept of orientability can be made precise by defining an unitary 

operator T which reverses the orientation of a string, i.e. 

r tX~(a, r)T = X~(e - ~, r). (3.37) 

(Recall tha t  the parameter  cr was defined to be in the range 0 < ~r < e.) 
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Expressed in terms of oscillators this means 

Tto~T = ( - 1 ) n o ~  u (open string) 
(3.38) 

T tc~n~T = ~n g (closed string). 

States of unoriented strings must be invariant under T; this means that  the 

spectrum of an unoriented open string consists of states with even mode 

number only, and the spectrum of unoriented dosed strings of states sym- 

metric under the interchange of left- and right-moving oscillators. This 

means for the open string that  the odd levels are absent and especially that  

the unoriented open string has no massless states. For the closed string 

only the symmetric and singlet piece of the massless states survive. For his- 

torical reason the closed oriented bosonic string theory is referred to as the 

extended Shapiro-Virasoro model, whereas the unoriented theory is called 

the restricted Shapiro-Virasoro model. From here on we will only consider 

oriented strings. 

Let us now try to interpret the mass spectra. As mentioned in the intro- 

duction, any interacting string theory with local interactions has to contain 

closed strings. Looking at the dosed string spectrum we see that  a massless 

spin two particle will always be present. It is very suggestive to identify 

it with the graviton, i.e. the gauge particle of the ubiquitous gravitational 

interaction. If we do this we have to relate the string scale set by the slope 

parameter to the Planck scale, i.e. a t ,-, G where G = M p  2 is Newtons 

constant and Mp the Planck mass. It is of course one of the attractive and 

encouraging features of string theory that  it necessarily contains gravity. 5 

This however also means that  the massive states, since their mass is now 

an integer multiple of the Planck mass, cannot be identified with known 

particles or hadronic resonances as was the original motivation for string 

5The presence of a massless spin two particle is a priori not sufficient to have gravity. 

We will however show in the last chapter that at low energies it couples to matter 

and to itself like the graviton of general relativity. 
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theory. But this is all right since the higher mass and spin resonances of 

hadronic physics have by now found an adequate description by QCD and 

the prospect of having a consistent quantum theory including gravity has 

lead to a shift in the interpretation of string theory from the hadronic scale 

(100 MeV) to the Planck scale (1019GeV). The other massless states of 

the closed string, the singlet and the antisymmetric tensor piece of eq.(3.36) 

can be interpreted as a dilaton and an antisymmetric tensor particle, both 

well know from e.g. Kaluza-Klein theory. What about the states of the 

open string? The massless vector could be interpreted as a gauge boson if 

we can associate a non-abelian charge in the adjoint representation of the 

gauge group to the open string. This can indeed be done if we attach to one 

end of the string the charge of the fundamental representation and to the 

other end the charge of its complex conjugate representation. This is the 

method of Chan and Paton. However, consistency of the interacting theory 

restricts the possible gauge groups to only one, namely SO(32). We will 

not go into details of the Chan-Paton method and why SO(32) is singled 

out. In Chapter 10 we will learn how to get non-abelian gauge symmetries 

in a theory of only closed strings. 

At the end of this discussion of a possible contact of string theory with 

known physics we have to say a word of caution. The suggested interpre- 

tation of the massless particles can of course only hold if they have the 

interactions appropriate to gravitons, gauge bosons etc. This means that 

the theory has to be gauge invariant and especially generally coordinate 

invariant as a 26 dimensional theory. This is not a priori obvious and will 

be demonstrated in Chapter 15. Also, we still have to find a way to go from 

26 to 4 dimensions. We will address this important question in Chapter 14. 
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3.4 C o v a r i a n t  p a t h  i n t eg ra l  q u a n t i z a t i o n  

Path integral quantization has proven useful for theories with local sym- 

metries, e.g. gauge theories. As such it is also applicable in string theory 

and an alternative to the non-covariant light-cone gauge quantization. The 

starting point is the Polyakov action, eq.(2.18). As discussed in Chapter 2, 

the induced metric F~/3 = ~c~X~oOflXl~ and the intrinsic world-sheet metric 

ha~ are related only through the classical equations of motion, Tal3 -- 0. 

Quantum mechanically this does not need to be so. In fact, just as we in- 

tegrate in the Feynman path integral approach to quantum mechanics over 

all paths, not just the classical ones, we have to integrate over ha/3 and 

the embeddings X ~. One must however find a measure for the functional 

integrations which respects the symmetries of the classical theory, which 

are reparametrizations and Weyl rescaling. If this cannot be achieved, the 

quantum theory will have extra degrees of freedom. One then fixes the 

gauge using the Faddeev-Popov procedure. Indeed, the measures for the 

integrations over the metrics and the embeddings are both not conformally 

invariant. However, Polyakov has shown that the conformal anomalies can- 

cel in 26 dimensions. So it is necessary to go to the critical dimension for the 

scale factor to decouple. We will not present Polyakov's analysis here but 

will derive the critical dimension by the requirement that the central term 

in the Virasoro algebra cancels when the contributions from the Faddeev- 

Popov ghosts are included. Cancellation of the central charge is equivalent 

to conformal invariance. We will assume in the following discussion that we 

are in the critical dimension in which the combined integration measure is 

conformally invariant. 

Consider the vacuum to vacuum amplitude or partition function s 

6Later we will calculate scattering amplitudes as corrdation functions with this par- 

tition function. 
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= c J 7)h(cr, r)lgX~(~r, r)eiSv[h,X]. (3.39) Z 

The integration measures in eq.(3.39) are defined by means of the norms 

II hll- f 
Ile Xll - fd2  

x/"hhag h~5 5ha~Sh~5 

~/-hSX~SX~ 
(3.4o) 

in the same way as for finite dimensional spaces the metric ds 2 = gijdxidx j 

leads to the volume element v/g dnx. We see that  neither measure is in- 

variant under rescaling of haf t.  The measure in eq.(3.39) is not complete. 

Factors involving the volume of the symmetry group will be discussed below 

and in Chapter  6. 

As described in Chapter  2, we can use conformal reparametrizations to 

go to a gauge in which the metric is equivalent to a fixed reference metric 

]zafl; i.e. our gauge condition is 

ha~ = e2¢]zafl. (3.41) 

We have also seen tha t  under reparametrizations and Weyl rescaling the 

changes in the metric can be decomposed as 

5h~fl = (P~)~fl + 2Aho~ (3.42) 

where the operator P maps vectors into symmetric traceless tensors. The 

covariant derivatives in above expressions are with respect to the metric 

ha~ = e2¢haf~ which is also used to raise and lower indices. The integration 

measure can now be written as 

I) h = V ( P ~ ) V./I = 7) ~'D A 

The Jacobian is easy to evaluate formally: 

o(P ,A) 
O(~,g) 

o(P ,A) 
O(~,A) 

o) 
= 1 = [det P[ = (det ppt) l /2  

(3.43) 

(3.44) 
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where • is some operator which does not enter the determinant. The inte- 

gral over reparametrizations simply gives the volume of the diffeomorphism 

group (more precisely, the volume of the component connected to the iden- 

tity). This volume does depend on the Weyl degree of freedom as the mea- 

sure T)~ does. We do however assume that all dependence on the conformal 

factor will eventually drop out in the critical dimension. We thus ignore it 

and drop the integral over A. We then have 

Z = f 7)X~(det PPt)l/2eiSp[ei~h'~'x~']. (3.45) 

The last step of the Faddeev-Popov procedure is to rewrite the determi- 

nant by introducing anticommuting ghost fields c a and bar, where hal 3 is 

symmetric and traceless. We then get 

(det ppt)l/2 .= / 7)cI)b e x p ( -  2~-~ / do'2x/hha~bfTVac 7) (3.46) 

where ha f  t = e2¢hafl is the gauge fixed metric. Both b and c are hermitian. 

Note that the c a corresponds to infinitesimal reparametrizations and bar 

to variations perpendicular to the gauge slice. One often refers to bail as 

the antighost. If we insert eq.(3.46) in the partition function we get 

Z = f 7)Xt~(cr, 7-)7:)c(a, v)7:)b(G r)e is[x'h'b'c] (3.47) 

where 

=_± S 87r f d2crV/~fza~{oaX~cgfXl~ + 4ibfTfTacV}" 

If we now choose f~af = r/af, i.e. go to conformal gauge, we find 

S -- S[X] q- Sghost[b, c] 

where 
1 

Sgho t[b, c] /d2  (c+O-b++ + c-O+b__). 

(3.48) 

(3.49) 
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Since ba/3 is traceless symmetric its only non-vanishing components are b++ 

and b__. 

We have to point out that  our t reatment  above left unmentioned some 

subtle points. One, having to do with the conformal anomaly, was already 

touched upon and will be taken up shortly. Another issue has to do with 

reparametrizations which satisfy (P()af l  = 0, i.e. with the possible exis- 

tence of conformal Killing fields. The equation of motion for the c ghosts is 

just the conformal Killing equation so that  the c zero modes correspond to 

diffeomorphisms which can be absorbed by a Weyl rescaling. In the func- 

tional integration we are to integrate over each metric deviation only once. 

Since the ones corresponding to conformal Killing vectors are already taken 

care of by the integration over the conformal factor, we have to omit the 

zero modes from the integration over c. 

Another  problem has to do with the question whether all symmetric 

traceless metric deformations can be generated by reparametrizations. As 

we know from Chapter  2, this is not the case if P f  has zero modes; they 

correspond to zero modes of the b ghosts. If present, they have to be treated 

separately to get a non-vanishing result, since f d0 1 = 0 for 0 a Grassmann 

variable. We will come back to the issue of ghost zero modes in Chapter  6. 

The energy momentum tensor of the ghosts fields can be derived from 

eq.(3.48) using eq.(2.19). Dropping hats from now on, we find 

Ta~ -- i(ba.rV/3c'r .+- bz.rVac'~ - c'rV.rba~ - ha~b.r~V~c6).  (3.50) 

The last term vanishes on-shell, as does the trace T a a .  In the derivation 

one also has to vary the metric dependence of the covariant derivatives 

and has to take into account the tracelessness of ba~. One can verify that  

VaTa# = 0 if one uses the equations of motion. In light-cone gauge, the 

non-vanishing components are 

50 



T + +  = + 

T _ _  = + 

and energy-momentum conservation is 

(3.51) 

O_T++ = O+T__ =o.  (3.52) 

The equations of motion are 

O_b++ = O+b__ = 0 

0 + c -  = O_c + = O. 
(3.53) 

They have to be supplemented by periodicity (closed string ) and boundary 

conditions (open string). The periodicity condition is simply b(cr + 2~r) = 

b(g) and likewise for c. In the closed string case the equations of motion 

imply that b++ and c + are purely left-moving whereas b__ and c- are purely 

right-moving. Left- and right-movers know about each other only through 

the constraints. For the open string, the boundary terms which arise in the 

derivation of the equations of motion vanish if we require b++ = b__ and 

c + = c- at the ends of the string. 

The ghost system, being anti-commuting, is quantized by the following 

canonical anti-commutation relations: 

{b++(~,,),c+(J,T)} = 2 ~ ( ~ - o ' )  
(3.54) 

{b__(~, T), c-(W, r)} = 2 ~ ( ~  - W) 

with all others vanishing. 

We can now solve the equations of motion and express the canonical 

brackets in terms of the Fourier modes. We then define the Virasoro oper- 

ators of the b, c system as the moments of the constraints T++ = T__ = 0. 

We will do this only for the closed string. 

The solutions to the equations of motion, periodic in cr with period 2~r 

a r e  
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and 

-JcO0 

c+(o,T)= ~ ~.e-i.(~+~) 
n = - - O O  

+oo ~-(~, ~) = ~ ¢~-i.( .-~) 
r t  ~-  - -  O0 

q-O~ 

b++(~,.)= ~ ~.e-i~("+~) 
n = - - O O  

+oo 

b__(~,~) = ~ b~e-~("-~) 

and the canonical anti-commutators become 

{bin, cn } -= 5m+n 

{bm, b~} = {cm,c~} = 0 

(3.55) 

(3.~6) 

(3.57) 

and likewise for the barred oscillators. Left-moving modes anticommute 

with right-moving modes. The Virasoro operators are defined as in eq.(2.66) 

and we get 
J r ( x )  

n ~ - - o o  

+c¢ 

Lm = ~ ( m -  n) :brn+ne-n: 
n ~ - - O O  

Hermiticity of b and c entails 

Cr~ - -  c t - - r~  

(3.58) 

b. = bt_~ (3.59) 

from which we get 

Lm = Lt_._m (3.60) 

with identical relations for the left-movers. 

Again, L0 and Lo are ambiguous due to operator ordering. We have 

defined them as normal ordered expressions. 

We can now compute the commutator of the Virasoro operators and 

find the algebra they satisfy. In the same way as it was done in the previous 

chapter, we obt~n 
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[Lm, Ln] = ( m -  n)Lm+n + A(m)Sm+n (3.61) 

where the anomaly is 

d(m) = ~ ( - 1 3 m  3 + m). (3.62) 

Let us now look at the combined matter-ghost system. We define the Vira- 

soro operators as the sum of the Virasoro operators for the Xt~ fields and 

the conformal ghost system 

Lm : x + L ¢ -  (3.63) 

where the last term accounts for the normal ordering constant in L X and 

Lgo h. We then get 

[Lm, Ln] = ( m -  n)Lm+,~ + d(m)Sm+n (3.64) 

with 
d 

13m 3) + 2am. (3.65) 
1 

A(m) = m(m 2 - 1) + ~ ( m -  

The first term is due to the X ~ fields (# = 1 , . . . , d ) ,  the second is due 

to the ghosts and the last arises from the shift in Lo. A(m) vanishes if 

and only if d -- 26 and a = 1. These are precisely the values we got from 

requiring Lorentz invariance of the theory quantized in light cone gauge. 

Here they arose from requiring that the total (ghost plus matter) anomaly 

of the Virasoro algebra vanishes. This in turn is the condition for conformal 

symmetry to be preserved in the transition from the classical theory to the 

quantum theory. 

Recall that  the anomaly in light-cone gauge was 24, the number of 

transverse dimensions. Even though light-cone quantization is completely 

consistent we cannot expect the anomaly to vanish since in making this 

gauge choice we have completely fixed the gauge and the light cone action 

is no longer invariant under the transformations generated by T++ and T__. 

53 



A p p e n d i x  A.  T h e  V i r a s o r o  a l g e b r a  

In this appendix we want to derive the algebra satisfied by the Virasoro 

operators. The fact that  in the quantum theory the Ln's are normal ordered 

expressions requires some care. 

The following commutator  will be useful: 

• 1 + o o  . . 

[O?m, Ln] = ~ E [a/m, : @dn-p :l" (A.1) 
p = - o o  

i commutes with Here we can drop the normal ordering symbol since o~ m 

c-numbers. Using [A, BC] = [A, B]C + B[A, C] we get 

1 +oo " " j i 

1 +oo 
: -2 ~ {6m+P°Cln-P + 6 m + n - P ( @ } m 6 i J  = mO~m+n 

(A.2) 

Next we write 

1 +oo  
[Lm, Ln] = -~ 

p=-oo  
i i :, Ln], : O~pO~m_ p (A.3) 

break up the sum to eliminate normal ordering and use eq.(A.2)" 

1 0 +°°[am_vO~ p, Ln] [apC~m-p, Lnl + "~ ~ i i [nm,nn]= ~ ~ i i 1 
p = - o o  p = l  

1 0 
Plap°~m+n-p  } 2 ~--~ ~ ( m -  ---~ t i i i i = - .4- pO~n+p(Xm_ p 

p=--oo 

+ -2 ~....." t -- P)arn+n-pOtp + Parn -p  n+p ] 
p = l  

(A.4) 

Now change the summation variable in the second and fourth term to q = 

p + n and get 
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0 

P)O~pO~m+n-P + E (q - -  _ r~ / O~aO~rn_l.n_ a 
p = - o o  q=--oo 

+oo +oo 
~-" ( m  i i i i 

+ E (q }" _ _ n ) O l m + n _ q ~  q + 
l . . -- . , .d x 

p=l  q=n+l  
(A.5) 

Let us now assume tha t  n > 0 ( the case n _< 0 is t rea ted  similarly).  We 

then  get 

1 0 n 
[ L m , L n ] - - ~ {  ~ ( m - n "  i i " " )°~qO~m+n-q -{- Z (q -- n)O~qO~2m+n-q 

q=-c~ q=l 
-t- c<) n 

+ ~ (m n' i i ,ai £ 
- - q )  r n + n - q  ! • 

q=n+l  q=l 
(A.6) 

We now notice t ha t  except for the  second t e rm all te rms are a l ready normal  

ordered ( the only critical case is when  rn + n = 0). The  second t e rm  can be 

rewr i t ten  as 
n n n 

Z ( q  i i __ n , i  i - n )~qc~m+~_q - ~ (q - ~ m + ~ - q ~ q  + ~ (q - n)qd6m+n 
q=l q=l q=l 

where d = 6 i. Using this  we get 

1 +co 

q = - c ~  q=l 

If we now use 

n 1 n 1 
q2 = gn(n + 1)(2n + t)  and  ~ q = ~n(n + 1) (A.8) 

q---1 q=l 

we finally get the  Virasoro algebra 

[Lm,Ln] = ( m -  n)Lm+n + d m ( m 2  - 1)6m+n. (A.9) 

In C h a p t e r  4 we will see how conformal  field theory  provides a simple 

tool  to rederive this  algebra. 
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Chapter 4 

I n t r o d u c t i o n  to Conformal  Field Theory  

This chapter is an introduction to conformal field theory. The basic ref- 

erence on two-dimensional conformal field theory is the work by Belavin, 

Polyakov and Zamolodchikov [1]. Some review articles which were used for 

the preparation of this chapter are refs. [2, 3, 4]. 

4.1 G e n e r a l  i n t r o d u c t i o n  

In distinction to higher dimensions the conformal group 1 in two dimen- 

sions is infinite dimensional: it is the group generated by analytic and anti- 

analytic vector fields. Associated with the infinity of generators is an infinity 

of conserved charges. That imposes important restrictions on the structure 

of two dimensional conformaUy mvariant theories. 

One class of physical systems which are described by conformal field 

theory are two dimensional statistical systems at the critical point (i.e. at 

T = To) where they are conformally invariant. The representation theory 

of the conformal group places constraints on the critical exponents. We will 

however not have much to say about these systems. 

The second important application of conformal field theory is to string 

theory. We have already seen in Chapter 2 that the string action in con- 

formal gauge is still invariant under conformal transformations with the 

1The conformal group is the subgroup of those general coordinate transformations 

which preserve the angle between any two vectors. They leave the metric invariant 

up to a scale transformation. 
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associated infinite dimensional Virasoro algebra. The classical solutions of 

string theory are conformally invariant two-dimensional field theories. A 

particular choice corresponds to a particular vacuum which determines e.g. 

the number of space-time dimensions, the gauge group etc. There are of 

course constraints tha t  a conformal field theory has to satisfy in order to be 

an acceptable string vacuum. One obvious condition that  we have already 

encountered is the vanishing of the conformal anomaly. Others, coming 

from modular invariance, spin-statistics etc. will be discussed in subsequent 

chapters. We can then use methods of conformal field theory to determined 

the string spectrum and to compute string scattering amplitudes. 

In order for conformal field theory to be applicable to string theory we 

have to continue the signature of the world-sheet metric from Minkowskian 

to Euclidean. Consider the world-sheet of a closed string - the cylinder - 

parametrized by ~z E [0, 27r] and r e [ -oc ,  +c~]. We now make a Wick 

rotation, i.e. go to imaginary r : r --+ - i v  or 

cr :k = v 4- cr --~ - i ( v  :t: io'). (4.1) 

We then define complex coordinates on the cylinder 

t z = T -  icr 

~t = ~" + icr. 
(4.2) 

We can now map the cylinder to the complex plane via the conformal trans- 

formation 
Z - -  e z t  = e T - i ° "  

2 = e ~' -- e *+iz. (4.3) 

This is i l lustrated in figure 4.1. 

The conformal map from the cylinder to the plane will not change the 

theory if it is conformally invariant. This will be the case for string theory 

in the critical dimension. 
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Y T 

Fig.4.1. Conformal map from the cylinder to the complex plane 

Having defined the theory on the complex plane we can now use all the 

powerful techniques of complex analysis. Lines of equal time r are mapped 

into circles around the origin. Integrals over a will be replaced by contour 

integrals around the origin. The infinite past becomes z -- 0 and the infinite 

future z -- c~. cr translations become rotations: o" -..-, o" + O =~ z --~ e - i O  z 

and time translations become dilatations: 7- - - ,  v + a =~ z ---* e a z .  In 

the quantized theory the generator of dilatations will take the role of the 

Hamiltonian and time ordering will be replaced by radial ordering. Equal 

time commutators will be equal radius commutators. This is known as 

radial quantization. Products of fields are only defined if we put them in 

radial order. Radial order is defined in analogy with time order in ordinary 

field theory: 
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Rr.~l,z~.~w~ ~ ~ , , ~ , , j  = / ¢l (z )¢~(w)  for I~1 > I~1 (4.4) 
¢~(~)¢~(z)  for I~1 > 1~1. 

There will be a relative minus sign for the case of two anticommuting fields. 

Products of operators will always be assumed to be R-ordered and we drop 

the ordering symbol. The necessity to put operators in radial order will be 

illustrated below. The equal radius commutator is then defined by 

(4.5) 

After Wick rotation eq.(4.1) and the map eq.(4.3) right- and left-moving 

is replaced by holomorphic in z and 5 respectively. We will use both ter- 

minologies interchangeably. Also, we will call fields holomorphic in 5 anti- 

holomorphic. Most expressions of Chapters 2 and 3 which were expressed 

in isothermal coordinates are unchanged if we replace (r- by z and G + by 

and include the Jacobian factors from the map eq.(4.3). For instance, the 

nonvanishing components of the energy momentum tensor are now Tzz and 

T~.  

The basic objects of a conformal field theory are the conformal fields 

(also called primary fields) ¢(z,5). Consider a conformal transformation 

z ---, z' - f ( z ) ,  2 --- 5' - / (2).  Primary fields transform as tensors under 

conformal transformations: 

¢(z,5) ~ ¢ ' ( z , 5 ) =  \ ~ z /  ~,-~z/h¢(z'(z)'2/(2"))" (4.6) 

In this chapter we will only consider single-valued fields, which requires 

h = h E Z. Under infinitesimal transformations 

z = z + ~(z) = ~ + ~(~) (4.7) 

we get 

¢'(z,  ~) = ¢(z ,  ~) + %~¢(z ,  ~) (4.8) 

with 
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5~,~¢(z, 2) = (hO~ + hO~ + ~c9 + ~0)¢(z, ~) (4.9) 

where we have introduced the notation 0 = ~z and ~ = ~ .  h and h are 

called the conformal weights of ¢ under analytic and anti-analytic trans- 

formations. Holomorphic and anti-holomorphic tensors have h = 0 and 

h = 0 respectively. (/z does not denote the complex conjugate of h.) Purely 

left- or right-moving fields are called chiral. Under a rescaling (dilatation) 

z ---+ Az, A real we have ¢ -+ Ah+h¢ and h + 7z is called the scaling dimen- 

sion. The generator of dilatations plays the role of the Hami!tonian and the 

scaling dimension is related to the energy. Under rotations z ---+ e-i~z we 

get ¢ ~ e-i(h-Tz)8¢; hence h - / z  is referred to as the conformal spin. 

Consider the map eq.(4.3) from the cylinder to the complex plane. Ap- 

plying eq.(4.6), the fields on the cylinder and plane are related as follows 

(z' = lnz): 

¢(Z)plane=(1)h¢(z'(z))cylinder. (4.10) 

If  ¢(Zl)cylinder has a mode expansion 

¢(-")cy nder  ¢ne-nz' z - n  = = ; ( 4 . 1 1 )  
nEZ n 

then the mode expansion on the complex plane is 

Cplane(z) -~ E z-n-hen (4.12) 
nEZ 

with the same coefficients Cn. From now on, unless stated otherwise, all 

fields will be on the complex plane. The inverse of eq.(4.12) is 

/dz 
= ( 4 . 1 a )  

0 

where the integration is counterclockwise around the origin. The value of 

the integral is independent of the contour around the origin. For fields 

single valued on the complex plane the mode numbers n have to be such 

that n+h E Z. They will however always be integer spaced. Note that single 
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valuedness on the plane does not mean single valuedness on the cylinder due 

to the Jacobian factor of the map eq.(4.3). 

We already know from Chapter  2 that  in a conformally invariant the- 

ory the energy momentum tensor is traceless, i.e. T~ = 0. Expressed in 

conformal coordinates it reads: 

Tz2. -- O. 

This, together with energy-momentum conservation 

cO~Tzz + cOzT~.z : 0 , cgzT~.~. + cgsT~.z : 0 

shows tha t  in a conformally invariant theory we have 

O2Tzz = O, OzT~.~. = O. 

(4.14) 

(4.15) 

(4.16) 

The two non-vanishing components of the energy-momentum tensor of a 

conformally invariant theory are analytic and anti-analytic functions respec- 

tively. We will use the notation T ( z )  = Tzz (Z)  and T(2) - Ts~.(2). From 

the conservation law eq.(4.16) we immediately find that  if T ( z )  is conserved 

so is ( ( z ) T ( z )  if ( depends only analyticaUy on its argument.  This infinity 

of conserved currents is equivalent to our s tatement at the beginning of this 

chapter that  the conformal group in two dimensions is infinite dimensional. 

With each current we associate a conserved charge 

/dz 
T~ = o ~ ~ ( z ) T ( z )  (4.17) 

which generates infinitesimal conformal transformations 

z -~ z ' =  z + ~(z) (4.18) 

with similar expression for the anti-analytic component T. From now on 

we will restrict our attention to chiral fields, say right-moving ones. 

The transformation eq.(4.9) is implemented by the commutator  of ¢(z) 

and T (w) 
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Fig.4.2. Integration contours in eq.(4.20) 

Using the prescription of radial ordering this gives: 

~¢(~)  = / Co 
bI>l~1 

dz ((z)T(z)¢(w)- / dz 
2~i zCo 2~i 

[ t<lwl 
- -  ((z)T(z)¢(w) 

=/C~,  dz 2~i ~(z)T(z)¢(w). 

The contours are shown in figure 4.2. 

(4.19) 

(4.20) 

Recall that  all operator products are assumed to be radially ordered. Com- 

paring this with eq.(4.9) for h = 0 and c~¢ = 0 we find with the help of the 

Cauchy-Riemann formula 

/C~, dz f(z) _ 1 
2~i (z - ~)~ - ( ~ -  1)! f (~- l ) (w) '  (4.21) 

that any conformal field must have the following (R-ordered) operator prod- 

uct with T(z): 

he(w) + cO¢(w) (4.22) T(z)¢(w)-  (z - w )  2 (z - w) + finite terms. 

Therefore, instead of eq.(4.6), the operator product with the energy-mo- 

mentum tensor can serve as the definition of a conformal field of weight 

h. 

Eq.(4.22) is our first example of an operator product expansion of two 

fields. The basic idea is that  if {Oi} is a complete set of local operators 
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with definite scaling dimensions, then the product of two operators can be 

expanded as 2 

Oi(z)Oj(w) = E Cijk(( z - w))Ok(w)" (4.23) 
k 

Invariance under  rescaling specifies the structure functions up to numerical 

constants: 

Cijk((Z - w)) = (z - w)hk-hi -h iCi jk  (4.24) 

where h i are the scaling dimensions of the fields which are not necessarily 

primary. Opera tor  products should always be thought as inserted into cor- 

relation functions (cf. below). The radius of convergence of the operator 

product is restricted by the positions of the other operators in the correla- 

tion function. Completeness of the set of operators {Oi} means tha t  any 

state can be generated by their linear action. 

Let us make one remark about the evaluation of commutators.  For the 

contour deformation of figure 4.2 it is crucial that  the fields in the integrand 

commute. Otherwise we would get the anticommutator.  Also, we see that  

(anti-)commutators depend only on the singularities of the operator product 

expansion. 

We can now examine the conformal transformation properties of the en- 

ergy momentum tensor. Using the commutation properties of infinitesimal 

conformal t ransformations 

[6 1,6 2] = (4.25) 

we find 

c/2 2T(w) OT(w) 
T(z )T(w)  - (z - w )  4 "~ (z - -~ )2  -t- (z - w) nu finite terms. (4.26) 

2 Here we consider chiral fields only. 
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The first term is allowed by eq.(4.25) and is consistent with Bose symmetry  

and scale invariance. We can rewrite eq.(4.26) in an equivalent way as 

: "~o3((z) + 20((z)T(z) + 5~T(z) ~(z)OT(z). (4.27) 

We see tha t  T(z) transforms as a tensor of weight two under those trans- 

formations for which c93~(z) - 0 but  fails to do so for general conformal 

transformations if c ¢ 0. Classically c is zero, and c ¢ 0 represents a con- 

formal anomaly, a purely quantum mechanical effect. Note that  the scaling 

dimension of T(z) does not get modified by quantum effects. This can be 

understood from the fact tha t  since T(z) is a symmetric traceless tensor 

it has spin two and for h = 0 the spin is the same as the scaling dimen- 

sion. One should compare eq.(4.26) with eq.(3.15). The T(z)T(w) operator 

product is of course equivalent to the Virasoro algebra and c is its central 

charge. We expand T(z) in modes 

T(z) : E z-n-2Ln (4.28) 

which in turn  gives 
f dz n+ln,  t 

L~ f ~/z  ~z) 

where the Ln's are the Virasoro generators. 

relation 

Ltn = L-n (4.30) 

which follows from the reality of the energy-momentum tensor in Minkowski 

In general, the hermit ian conjugate of a field of space (c.f. Chapter  2). 

weight h is defined by 

For the modes this means 

(4.29) 

They satisfy the hermiticity 

1 (4.31) 

: ( 4 . 3 2 )  
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A hermitian field satisfies ¢t = ¢. A word of explanation is in order. Con- 

sider the continuation back to the Minkowski space cylinder. The missing 

factors of i in Euclidean space-time evolution, ¢(cr, v) = eHr¢(cr, O)e -Hr ,  

must be compensated in the definition of adjoint by an explicit time reversal 

T ~ - r .  This corresponds on the complex plane to z ~ 1/2. 

The Virasoro algebra is then easily obtained, using eq.(4.26), as the 

difference of a double contour integral: 

[Ln,nm] ] 
0 ~ w ~ . ( z -  w)4 ( z -  w)2 z--C-L-~, 

= ..i.~n(nC _ 1)(n + 1)6m+n + (n - m)nn+m • 

(4.33) 
T(2) or, equivalently, the Ln satisfy identical algebras as T(z)  and the Ln. 

The two algebras commute, i.e. [Ln, Lrn] - 0. The central charges of the 

left- and right-moving algebras are the same since T + T is real. Then the 

(T + :~)(T + :~) operator product is real only if c = e. 

The Ln's act as the generators of all possible conformal transformations. 

A primary field is defined via the Ln's as 

[Ln, ¢(z)] = zn[zO + (n + 1)h]¢(z) (4.34) 

or, in terms of the modes of ¢: 

[Ln, ¢m] = [ n ( h -  1 ) -  m]¢n+m. (4.35) 

Comparing eq.(4.34) with eq.(4.9) we see that  the Virasoro generator Ln is 

associated with the infinitesimal transformation e(z) = z n+l .  In particu- 

lar, L0, L1, L - l ,  generate infinitesimal transformations 5z = ~ + j3z + 7z2; 

they are the generators of SL(2, R) ,  the maximal closed subalgebra of the 

conformal group. The finite transformations are 

I a z + b  
z ---, z - (4.36a) 

cz + d  
with 
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( :  b) a,b,c,d E R, (4.36b) 
d ESL(2 ,  R),  i.e. a d - b c = l .  

Indeed, if we expand eq.(4.36) around a = d = 1,b = c = 0 we get 5z = 

6b + (6a - 6c - 6d)z - 6cz 2. Adding Lo, L+I, f--l ,  we generate SL(2, C). 

SL(2, C) transformations are the only globally defined invertible conformal 

mappings of the Riemann sphere (C U c~) one-to-one onto itself. This is in 

fact easy to see. The transformations 5e are generated by the vector fields 

c(Z)Oz; only those which satisfy c93e(z) = 0 are defined at both  z = 0 and 

z = oc (for z = oc we use the map w = 1/z). The transformations eq.(4.36) 

are called fractional linear or Moebius transformations. If we define the 

generators Xo : Lo, X1 : l (L1 q-- L - l )  a n d  X 2 --" ~(L1 - L - l )  we easily 

verify that  they satisfy the three dimensional Lorentz algebra [Xi, Xj] : 

iei jkX k (X ° - -  -X0) .  

Eq.(4.27) can be integrated to give the behavior of T(z)  under finite 

transformations z --+ f (z ) .  One finds 

c D T(z)  ---, T '(z)  = (cgf(z))2T(f(z))  + -~ ( f )z  (4.37) 

where 
a/(z)O3 f(z)  -  (o2 f(z)  ) 2 

D( f ) z  = (of)2 

is the Schwarzian derivative. It has the following properties 

D ( f ) z  = 0  

+ b  

o(/)z 

a z + b  
cz + d  

(4.38) 

- D ( f ) z  (4.39) 

= (Cgzg)2D(f)g + D(g)z. 

The Schwarzian derivative is in fact the only weight two object with these 

properties. For the map from the cylinder to the plane, eq.(4.37) gives 

c (4.40) Tcy l (Z ' ) -  z2Tplane(Z) 24" 
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In part icular for L0 this gives 

C 

( no )cyl = (Lo)plane 24" (4.41) 

Now, let us consider the Hilbert space and also some of the represen- 

tat ion theory of a conformal field theory. Denote the in-vacuum by 10/. 

Regularity of the energy-momentum tensor at z --- 0 (r  = - o o )  requires 

that  

L JO) = 0 for n > - 1 .  (4.42) 

The Ln's with n > - 1  generate the conformal transformations which are 

regular at the origin. To get the conditions on the out-vacuum (01 following 

from regularity at z - co (v - q-oo) we map the point at infinity to the 

origin via w = - 1 / z .  The mode expansion of T is then Tl(w) -" ~ wn-2Ln 

and we find 

(0Inn = 0 for n < 1. (4.43) 

Here T I is the energy-momentum tensor expressed in the coordinates where 

w --, 0 corresponds to z ---, c~. Eqs.(4.42) and (4.43) are hermit ian con- 

jugates of each other. The generators of SL(2, C) annihilate both  the in- 

and the out-vacuum. We refer to this vacuum as the SL(2, C) invariant 

vacuum. The requirement of regularity at z -- 0 and z -- oo leads for a 

pr imary field of weight h with mode expansion as in eq.(4.12) to 

¢ 10) = 0 for > 1 - h, 
(4.44) 

(01¢n = 0 for n _< h -  1. 

Note tha t  for h < 0 there are modes of ¢ which annihilate neither the in- 

nor the out-vacuum. (The case h -- 0 is trivial since in uni tary  theories the 

only conformal field with h = 0 is the identity.) We will however see below 

that  uni tar i ty  restricts the conformal weights to h >_ 0. This is however 

avoided by the ghost system. The c-ghost has h = - 1  and the three zero 

modes c-1, co and c+1 do not annihilate the vacuum. 

68 



Let us now construct the asymptotic in- and out-states of the conformal 

field theory. Since the time ~- --+ -oo on the cylinder corresponds to the 

origin on the z-plane, it is natural to define in-states as 

ICjin) -- Um Cj(z)10 ) = Cj(0)10 ) -- ¢_hjl 0) (4.45) 
z---~0 

where 

¢-h3 = / C  d__~__z l¢(z)" (4.46) 
0 27ri z 

To define the out-states (¢j out[ we have to construct the analogous objects 

for z --+ oo. We want, of course, that (¢jout[ = [¢jin) t. Using eqs.(4.31) 

and (4.32) leads to the following definition for (¢jout[: 

(¢j outl = z~m~(Ol¢~( z ) z  2hi = (01(¢t)hj • (4.47) 

Since ¢(z) is primary, one derives from eq.(4.34) (we have dropped the 

subscript 'in') 

L01¢j) = hjl¢~'), (4.48) 

Ln]¢j) =0,  n > O. 

Also, 

Lo(L_~l~j>) = (n + hj)(L-~l~j>) for ~ > 0, (4.49) 

i.e. the L - n  (n _> 0) raise the eigenvalue of L0. States satisfying eq.(4.48) 

should be called 'lowest weight states'; however, in analogy to the terminol- 

ogy used in the representation theory of Lie algebras they are called highest 

weight states of the Virasoro algebra. We have thus established a corre- 

spondence between conformal fields and highest weight states. The vacuum 

10) is itself a highest weight state; in a urdtaxy theory (hi >_ O, cf. below) 

it has the lowest eigenvalue of the 'Hamiltonian' L0. Highest weight states 

with different L0 eigenvalue are orthogonal. 

The complete Hilbert space is obtained by acting with the raising oper- 

ators L-n  (n > 0) on highest weight states. The new states obtained in this 

way are called descendant states. Each highest weight state ]¢j) determines 
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a representation of the Virasoro algebra labelled by hi. This representation 

is called a Verma module, consisting of all fields of the form 

I¢~1. . .k~)  . , = n-k I "" n-lc,~lCj} ki > 0 (4.50) 

with L0 eigenvalue hj + ~,i ki. States in different Verma modules are easily 

seen to be orthogonal to each other. Descendant states are created from the 

vacuum by descendant fields which are not primary but rather secondary 

operators. They are contained in the operator product of the primary field 

with the energy-momentum tensor: 

OO 

w) 2+k¢( -k)  w T ( z ) ¢ ~ ( ~ )  = ~ (z - - ~ ( ) (4 .51)  
k=O 

i . e .  

~ i  (z - w ) l - k T ( z ) ¢ i ( w )  =_ L_k¢i(w ). (4.52/ 

Especially 

¢l° l (z )  = L 0 ¢ i ( z )  = h i¢~(z )  
(4.53) 

(-1) 
¢i (z) = Z,_~¢i(z) = a¢ i (z ) .  

The other descendants for k >__ 2 appear in the regular terms of the operator 

product eq.(4.51). The fields ¢!-k) do not exhaust the descendants of the 

primary ¢i(z). The operator product T ( z ) ¢ l - k l ) ( w )  contains the fields 

¢!-kl'-k2)(w) and so on. For the descendant field that creates the state 

eq.(4.50) we get 
(k} z A ¢i ( ) =  n -k l ""L-k ,~¢ i (z )"  

These fields constitute the conformal family [¢j]. We have already en- 

countered one example of a secondary field, namely the energy-momentum 

tensor. It is in the conformal family of tile identity operator [I] which is 

present in any conformal field theory. Indeed 

I(-2)(z)  = L_2I(z)  - ~,. dw T ( w )  I ( z )  = T(z) .  (4.54) 
z 2~ri w - z  
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Note that  the states eq.(4.50) are not all independent due to the relation 

between the Ln's given by the Virasoro algebra. A basis is given by those 

states for which k 1 > . . .  >_ km > 03 . A state is defined to be in the n ' th  

level of the Virasoro algebra if its L0 eigenvalue is hj + n. Thus the n ' th  

level is spanned by the vectors of eq.(4.50) with Z ki = n. There are P(n) 

such states, where P(n) is the number of ways of writing n as a sum of 

positive integers. One easily convinces oneself that  the generating function 

for P(n) is given by 

E P(n)q n 
n=O 

: (1 + q + q: + . . . ) (1  + q2 + q4 + . . . ) (1  + q3 + . . . ) . . .  

-- H ( l _ q n )  
n = l  

where we have defined P(O) - 1. 

(4.55) 

The part i t ion function, also called character of a conformal family, con- 

tains the information of the number of states at each "energy" level; it is 

defined as 
OO 

Chj(~-) : Wr qLo-~4 : ~ p(n)qhi+n-~,  q : e27rir 

n=O (4.56) 

__ q h j - ~  1-I (1 -- qn)-I 
n = l  

where the trace is over all members of the conformal family [¢j]. In Chapter  

6 the identification of r with the complex modulus of the world-sheet torus, 

relevant for one-loop string calculations, will be explained. In a statistical 

mechanics context it is related to the inverse temperature.  

Let us now take up our discussion of operator product expansions, 

eq.(4.23). In general, the product of two operators will contain primary 

and descendant fields. In particular, if ¢i and Cj are primary, we get 

3This is not quite t rue if there are null states, a complication which we will not discuss. 
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k {0 
(4.57) 

termined by conformal invariance in terms of the dimensions hi, hj and h k. 

Then the spectrum of primary fields, their operator product coefficients and 

the central charge of the Virasoro algebra completely specify a conformal 

field theory. These parameters cannot be determined from conformal sym- 

metry. One needs extra dynamical principles such as associativity of the 

operator algebra. Not any set of parameters {c, hi, Cijk} d e f i n e s  a conformal 

field theory. Their classification is still an open problem. 

The information which conformal families are contained in the operator 

product of two primary fields is encoded in the fusion rules 

¢i × Cj = Nijk¢k, k e No. (4.58) 
k 

Nij k > 1 means that there is more than one way the primary field Ck is 

contained in the product of ¢i and ¢5" This is similar to the situation in 

the theory of finite dimensional groups where a representation can appear 

more than once in the product of two representations. 

Let us briefly investigate the constraints of unitaxity for representations 

of the Virasoro algebra. Unitarity means that the inner product in the 

HAlbert space is positive definite. The inner product of any two states can 

be computed from eqs.(4.33) and (4.48) 

c 3 (¢jlLnL-nlCj) = [2nhj + --~(n - n)](¢j[¢j). (4.59) 

Taking n sufficiently large implies that c > 0, while for n = 1 we find that 

hj > 0; i.e. the vacuum is the state of lowest energy. A more detailed 

analysis shows that unitarity places no further constraints if c > 1. Then 

one has in general an infinite number of primary fields and c and h can take 
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continuous values. On the other hand, if c < 1, both the value for h and c 

are quantized, c is given by [5] 

6 
c = l  m ( m  + 1) m --- 2 , 3 , 4 , . . .  (4.60) 

and h is limited to the values: 

[(m + 1 ) p -  rnq] z - 1 

hp,q = 4rn(rn + 1) (4.61) 

p = l , 2 , . . . , m - 1 ,  q = l , 2 , . . . p .  

The conformal theories with c and h given by eqs.(4.60) and (4.61) are called 

minimal models, c and h are rational and there is only a finite number 

of pr imary fields. Conformal field theories with these properties are also 

called rational. For the first few values of m the minimal models have been 

identified with statistical systems. The first non-trivial one is obtained for 

m = 3 and describes the continuum limit of the two-dimensional Ising model 

at the critical point. 

Let us now make some general remarks about correlation functions. Re- 

call that  they are vacuum expectation values of R-ordered products.  Their 

general structure is severely restricted in a conformal field theory as we will 

demonstrate.  Since the vacuum is invariant under SL(2, C) (however not 

under the full conformal group) correlation functions have to satisfy 

(¢'1(z,)  ' • ' ' ¢ n ( Z n ) )  "-" ( ¢ l ( Z l ) ' ' ' ¢ n ( Z r t ) )  (4.62) 

where Ct(z) is the SL(2,  C) transformed of ¢(z). For pr imary fields we know 

how they transform under conformal transformations (cf. eq.(4.6)). The 

following discussion is however valid for a less restricted class of fields, the 

so-called quasi-primary fields, which transform as tensors under SL(2, C) 

but not necessarily under the full conformal group. Many secondary fields, 

as e.g. the energy-momentum tensor, are of this type. The generators of 

SL(2, C) act as 
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L-1 " translations z t = z + b i ( ) = ¢ i ( z + b )  

dilatations and 
Lo " z I = az 

rotations 
¢~(z) = a h i ¢ i ( a z  ) 

special conformal z' z 

L+I " t ransformations - cz+l 
(4.63) 

Invariance under translations tells us that  a general n-point correlation can 

only depend o n  z i j  = z i - z j .  This means in particular that  the one-point 

function must be a constant. 

that  they vanish; i.e. 

for all quasi-primary fields. 

Then, from dilatation invariance it follows 

(¢i(z)> = 0  (4.64) 

For two-point functions invariance under 

dilatations and rotations means that  they can only be (¢ i ( z )¢ j (w) )  -- 

Cij(z  - -  W)-(hi+hJ ) where Cij is a constant which can not be determined 

from SL(2,  C) invariance. Invariance under special conformal transforma- 

tions restricts this further to hi = hj so that  finally 

C~j for hi = h j ,  
(¢i(z)¢j(w)> = (z-w)2hi (4.65) 

0 for h i 7£ hi. 

We can normalize the pr imary fields of a given theory such the only non- 

vanishing two-point functions are 

5ij 
- ( z  - w ) 2 h ,  ( 4 . 6 6 )  

Three-point functions are constrained by dilatations and rotations to be of 

the form f(z12z13z23) where f is a homogeneous functions of degree hi + h 2 +  

h3. This function is completely determined, up to a constant, by invariance 

under special conformal transformations. We easily find 

Cijk (4.67) (¢i(Zl)¢j(z2)¢k(Z3))-- hi+hj_hk hi+hk-hj hj+hk-hi" 
Z.12 Z13 Z23 
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The Cij k are just  the operator product coefficients (cf. eq.(4.24)). Using 

this equation we can also evaluate the expectation value of a field Cj(z) 

between an asymptotic in-state [¢kin) and an asymptotic out-state <¢/out [. 

This simply amounts to taking the limit zl ---+ oo and z3 -+ 0 in eq.(4.67): 

<¢ioutlCj(z)lCkin) = Cijk (4.68) 
zhj+hk_hi . 

For correlation functions of four and more quasi-primary fields the situation 

becomes more complicated. They are no longer determined up to a constant. 

The reason is that  out of four points zi we can form so-called anharmonic 

quotients or cross ratios 

= (zi - z j ) ( z k  - z l )  

( z i -  z l ) ( zk  z j )  
(4.69) 

which are invariant under SL(2,  C) transformations of the z i. It is easy to 

see that  for the four-point function there is only one independent cross ratio. 

For n-point functions there are n - 3. Then, repeating above reasoning, we 

find the following general structure for an arbitrary correlation function of 

n quasi-primary fields: 

z-~iJ f(Xkl5 <¢l(Zl) ' ' ' (~n(Zrt)> -- H ij ', {j/  
i<j 

(4.70) 

where the 7ij = 7ji are any solution of the set of ½n(n - 1) equations 

E 7ij = 2hi (4.71) 
j#i 

and f is an undetermined function of the ( n -  3) independent cross 

ratios; it cannot be determined from SL(2, C) invariance. (Note that  

I-[i<j z~j (Tij-'~i/) for 7ij and zYij two different solutions of eq.(4.71) is al- 

ways a function of the Xikjl.) One solution for n = 4 is 

= zh2+h4  ..hl+h3 
13 ~'24 ( " ~ z 1 2  z34 

hl+h2 h2+h3 h3+h4 hl+h4 f ~ , ~ J  " 
z12 z23 z34 z14 

( 4 . 7 2 )  
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•ig.4.3. Crossing symmetry of the four point amplitude 

The four-point amplitudes can be used to obtain some constraints on the 

operator product coefficients Cij k. One evaluates the four-point function in 

two ways as shown schematically in figure 4.3. Associativity of the operator 

algebra implies that the two ways give the same result. This is known as 

crossing symmetry or duality of the four-point amplitude. In this way we 

obtain an infinite number of equations that the Cijk's have to satisfy. The 

procedure of solving these relations is known as conformal bootstrap; in 

general this is very difficult to do in practice. 

We complete the discussion about general properties of amplitudes in 

conformal field theory by writing down the conformal Ward identities satis- 

fied by correlation functions of primary fields ¢i(z). Ward identities among 

correlation functions generally reflect the symmetries of a theory. We want 

to investigate the constraints of the local conformal algebra on the corre- 

lation functions of the primary fields. Therefore consider the action of the 

generator of infinitesimal conformal transformations, fC ~T~z~(z)T(z)' on 
0 

the correlation function of n primary fields ¢i(wi) (i -- 1 , . . . ,  n) where the 

z-contour surrounds all points wi. Analyticity allows to deform the contour 

to a sum over contours encircling each of the points wi: 
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dz 
~ i ~ ( z ) T ( z ) ¢ l ( w l )  . . . Cn(wn)) 

n JC dz 
= ~ (¢l(wa). . .  ( 27r i ( ( z ) r ( z )¢ j (wj ) ) . . . ¢n (Wn))  

j= l  ~1 
r~ 

--" E (¢I(Wl)'''~¢j(Wj)''*¢n(Wn))" 
j = l  

This must hold for arbitrary ~ leading to 

(T(z)¢a(wl)  . . . Cn(wn)) 
n hj 

= E _((z - ~,j)~ + - -  
j = l  

(4.73) 

z -- Wj  
10wj)(¢l(Wl)...¢n(Wn)). (4.74) 

This is the unintegrated form of the conformal Ward identity. 

4.2 App l i ca t ion  to s t r ing  t h e o r y  

Now let us return to the closed bosonic string theory and study the simplest 

example of a conformal field theory, the massless free scalar field X ( z ,  ~.). 

In Euclidean space, the action for such a field is 

S - 14~r f d 2 z O X ( z ' 2 ) O X ( z ' 5 )  (4.75) 

which, up to the index #, is the Euclidean action of the bosonic string in 

units where at = 2. It leads to the equation of motion 

with general solution 

OOX(z,5) = 0  (4.76) 

X(z ,~ )  = X ( z )  + ~(5) .  (4.77) 

The fields X ( z )  and 2(2)  correspond to the right- and left-moving coordi- 

nates of the closed bosonic string respectively. The propagator for the free 

boson X(z ,  ~) following from the action eq.(4.75) is 

(X(z,~)X(w,~))=-21oglz-~l , Iz l> I~1. (4.78) 
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It satisfies the equation 

O0<X(z,2)X(w,  ~)> = -27r6(2)(z - w) (4.79) 

which follows from 4 

a01og I 12 = (4.80) 

Making the split into left- and right-movers, eq.(4.77), we get 

( X ( z ) X ( w ) )  = - log(z  - w), 
(4.81) 

(2(~)2(~)> = - l o g ( 2 -  z~). 

Here we have treated X and X as completely independent fields (cf. the 

discussion in Chapter 3). From its two-point function we see that the field 

X does not have a definite scaling dimension. However, we will only need its 

derivatives and exponentials, both of which have definite scaring dimension 

and are good fields of the conformal field theory. This will be demonstrated 

below. 

The energy-momentum tensor following from the action eq.(4.75) is 

1 
T(z) = --~ " OX (z)OX (z): (4.82) 

and likewise for 20(5). This can be found with reference to eq.(2.41). How- 

ever, the easiest way to derive the energy-momentum tensor which does not 

require a metric, is to compute the change of the action under infinitesimal 

coordinate transformations 6z = ( and 65 = ~: 

Eq.(4.82) then follows with 5X = (OX + ( O X .  In eq.(4.82) normal ordering 

is defined by 

4One way to see this is as follows: 00 log  [z[ = 1 1 1 z z _ ~0 2 = ~ 0 ~  = l l im¢~0  01zl:+,: -- 

1 lime._.0 '~ (iz[:+~2)~ - -  7 r 6 ( 2 ) ( z ) .  An alternative way is to integrate with a test 

function. 
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• ¢ i (z)¢ j (z)  := whrn z (¢i (w)¢j(z)  - poles) (4.84) 

where the pole terms to be subtracted are those arising in the operator 

product expansion of ¢i(w)¢j(z) .  

It is now straightforward to compute the operator product of the energy- 

momentum tensor with itself. Since we are deahng with free fields we can 

use Wick's theorem. Remembering that  no contractions are to be made 

within are normal ordered expression, we find with the help of the basic 

contraction eq. (4.81) 

1 2T(w) OT(w) 
T ( z ) T ( w ) -  (z ~ + + + . . .  (4.85) _w)4 (z-w)~ ( z - w )  

This shows tha t  we have a conformal field theory with c = 1. 

Finally, we have to specify the conformal fields of this model. As al- 

ready mentioned, X ( z )  is not a conformal field due to the logarithmic z- 

dependence of its propagator. Computing the operator product  of T(z)  

with cgX(z), 

ox (w)  o(ox(w))  
T ( z ) O X ( w ) -  (z - w) 2 + (z - w) + ' ' ' '  (4.86) 

shows that  cgX(z) is a conformal field with dimension h = 1. We can expand 

it in modes as 

iOX(z)  = ~ anz  - n - 1  , a o - ' p .  (4.87) 
n E Z  

(Cf. Chapter  3.) Higher derivatives O(n)X(z) are not pr imary but  descen- 

dant fields with h -- n. For example, 02X(z)  --- L_IOX(z) .  The only other 

conformal fields in the free scalar model are normal ordered exponentials of 

X(z): 

10~2 1 cgw] :e i~X(w) (4.88) 
T(z) :ei~X( w) = [(z - w)2 + (z - w) : + ' "  

This is again shown using a Wick expansion. We find tha t  the operator 
a 2 

• eiaX(z) • has conformaI dimension h = -2- with a being a continuous 

variable. 
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The complete operator product algebra among the conformal fields has 

the following form: 

o x ( ~ ) o x ( . ~ , )  = 
1 

w, 2) + finite (4.89a) 
(z 

:j~x(~). :jZx(~). = (z - w) ~ • j ( ,~x (~)+Zx(~) ) .  

-- ( z  - w )  c'g • e i ( a + g ) X ( w )  : (4.89b) 

+ i~(z  - w) '~+~ . o x ( w )  j ( , , + ~ ) x ( w ) .  + . . .  

O X ( z )  : j , , x ( ~ ) .  = 

From eq.(4.89a) we find 

io~ 

Z - - W  
- -  e iaX(w)  + finite (4.89c) 

{am, a~} = mhm+~. (4.90) 

at-n = an  follows from Hermiticity of icgX. We can now calculate its two- 

point function: 

( O X ( z ) O X ( w ) )  - -  - E (O[oLr~Ol'rrt[O) Z - T I - l w - m - 1  
,D.'l, ~ n 

= - ~ n z - n - l w + n - 1  (4.91) 
n>0 

1 
- ( z -  ~ ) 2 ,  for Izl > l~ l .  

where we have used eq.(4.44). This result also follows from eq.(4.78) upon 

taking derivatives. Above derivation however demonstrates that  the opera- 

tors have to be radially ordered for the sum to converge. 

In the bosonic string theory one deals with d (d = 26) identical free 

bosonic fields X ~ ( z ,  5) (# = 0 , . . .  d -  1) and their contribution to the central 

charge is c = ~ = d. Physical string states must satisfy the following 

conditions: 
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L n [ ¢ )  : L n l ¢ )  - 0, n > 0 

(L0 - 1)1¢> - (L0 - 1)1¢) = 0, (4.92) 

(n0 - L 0 ) [ ¢ )  = 0 .  

This means that  physical string states correspond to primary fields of the 

conformal field theory: 

I ¢ ) -  ¢ ( o ) 1 o ) -  l im ¢(z,2)[0 ). (4.93) 
z,5--,O 

¢(z, 5) are conformal fields and create asymptotic states. They are called 

vertex operators. String scattering amplitudes are then simply correlation 

functions of vertex operators (cf. Chapters 6 and 15). Eq.(4.92) also implies 

that  the conformal dimension of vertex operators is (h,h) = (1, 1). 

Let us briefly discuss the spectrum of the closed bosonic string in the 

context of conformal field theory. The lowest state is the tachyon; it is a 

space-time scalar with momentum k~. 

I k ) =  l im :eikpXP(z'z):lO ). (4.94) 
Z~'-'-~0 

The physical state condition eq.(4.92) requires that  :eikpXP(z,e): has con- 

formal dimension h = h = 1. With X ~ ( z ,  e) = X~'(z) + 2 ~ ( ~ )  this leads to 

k 2 = 2 which is the mass shell condition for a tachyon: m 2 = - k  2 = -2 .  

Let us verify that  the state ]k) carries momentum k~. We restrict our at- 

tention to one, say the right-moving sector. Then [k) =: eikpZP(O): 10) and 

the momentum operator is ~o = i ~ ~z~OZ~(z). Then 

j dz : k~ ~'olk) = i - f ~ o x . ( z )  j k ,  x , ( z ) :  Io) = Ik) 

where we have used the operator product eq.(4.89c). 

The states at the next level have the form: 

lim "OXt~(z)OXu(5)e ikpxp(z,~)" 10) tk, ~) = ~.~ :,~-~0 

(4.95) 

(4.96) 
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etw is a polarization tensor. These states are just those discussed in 

eq.(3.36). Since cgXt~(z)Offv(2.) has h = h = 1, we find k 2 = - m  2 = 0 

for these states; they must be massless. We still have to check whether this 

vertex operator is a conformal field. We therefore take its operator product 

with the energy-momentum tensor T(z); we can do this for the holomorphic 

and anti-holomorphic parts  separately: 

etwT(z  ) :cgXtZ(w)OXV(z~)eikpXP(w'~) : = 

[½k2+1 ] 
+ L(z- )2 + 

k~et,, . ~XV(ffj)eikpxP(w,~). 
(z-w)3 

: + . . . .  

(4.97) 

Thus, we recognize tha t  in order to get rid of the unwanted cubic singularity 

one has to demand tha t  

k ~ v  = 0 (4.98) 

which, together with k 2 = 0, is nothing else than the on-shell condition for a 

massless tensor particle which we identify with the graviton, antisymmetric 

tensor and dilaton, depending on whether ear is symmetric traceless, anti- 

symmetric or pure trace. 

We close this chapter with an observation concerning string scattering 

amplitudes. Scattering amplitudes of asymptotic string states are corre- 

lation functions of the corresponding vertex operators 5. We have already 

said that  the vertex operators are pr imary fields of the Virasoro algebra of 

weight (h, h) = (1, 1). It involves, however, also an integration over the 

positions of the vertex operators. (This will be discussed in more detail in 

the last chapter where we explicitly compute string scattering amplitudes.) 

We then get expressions of the form 

5The discussion here is limited to string tree level amplitudes since there the world- 

sheet is the (Riemann) sphere which is conformally equivalent to C U oo. 
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/ f l  d2zi (V(zl,22)'"V(zn,Sn)). (4.99) 
l = l  

Since the V's have weight (/z, h) = (1, 1) and the integration measure trans- 

forms under SL(2, C) as d2zi --+ ~lcz+dl 4 we find, using eq.(4.6), that  string 

amplitudes are SL(2, C) invariant. 

Let us now demonstrate that  secondary states decouple from string 

scattering amplitudes. Consider the correlation function 

A = (¢(~-k)(z)¢l(Zl)...¢~(z~)) (4.~oo) 

where the ¢i, i = 1,. • -, n are pr imary and 

: 2,,i (w - -1¢~(z )  (4.101) 

is secondary. We now insert eq (4.101) into eq.(4.100) and deform the con- 

tour to enclose the points zi , . . . ,  zn instead of z. (This is easy to visualize 

for the sphere which is conformally equivalent to C tO oo.) Then, expanding 

the operator products T(w)¢i(zi), we get 

A = / ~ I {  ( k - l ) h i  Ozi } = (z~-  z)k + ( z i -  z)k-1 (¢~(z)¢l(z~) . . .¢~(z~)) .  (4.102) 

If the ¢i are vertex operators, we have h i = 1, Vi and this can be written 

as  

.4 -  ~ 0~ z)k_ ~ (¢~(z)¢~(z~)... ¢~(z~)) (4.103) 
i = l  ( z i  - -  

which vanishes upon integration over the positions of the of the vertex op- 

erators. This argument can be generalized to the case of several descendant 

fields. 
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Chapter 5 

Reparametrization Ghosts and BRST Quantization 

As a second application of conformai field theory we want to examine 

the reparametrization ghosts which we introduced within the path integral 

quantization of the bosonic string in Chapter 3. In the second part of 

this chapter we study the related issue of BRST [1, 2] quantization, using 

the formalism of ref. [3]. The BRST treatment of string theory was first 

discussed in [4]. References [5, 6] provide an overview over the material 

presented in this chapter and contain an exhaustive list of literature. 

5.1 The  ghost  sy s t em as a conformal  field t h e o r y  

In conformal coordinates the ghost action is 

1 f d2z(bzzO~.c z + b~OzC ~') (5.1) S=2-- ~ 
and the solutions of the equations of motion are 

~z = c ( z )  , bzz = b (z )  
(5 .2 )  

J = e ( z )  , b ~  = ~(z). 

The ghost fields are effectively free fermions with integer spin. b(z) is an 

analytic conformal field of dimension (spin) (h,h) - (2,0), c(z) is a field 

of dimension (h, lz) - (-1,0);  b(z) and ~(2) are antianalytic conformal 

tensors with (h,h) = (0,2) and (0, -1)  respectively. In the following we will 

restrict the discussion to the analytic fields b(z) and c(z). Their propagator, 

following from the action eq.(5.1) is 
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It satisfies 

1 
( b ( z ) c ( w ) )  = ( c ( z ) b ( w ) )  - (5.3) 

Z - - W  

O~(b(z)c(~)) = 2~6(~)(z- ~) (5.4) 

where we have used 

o~ ~ - 2~(~)(z  - w). (5.5) 
Z - - W  

From the propagator we deduce the following operator products 

1 
c ( z ) b ( w )  = b ( z ) c ( w )  - - -  + . . .  (5.6) 

Z - - W  

Next we expand the ghost fields into modes: 

c(z) "-- E Cnz-n+l 
(5.7) 

b ( z ) = E b . z  -" -2  
n 

with hermiticity conditions btn = b - n  and ctn = c - n .  On the S L  2 invariant 

ghost vacuum [0)b,c the oscillators act as 

bn[O>b,c=O for n _ _ - l ,  
(5.8) 

cn lO>b,c=O for n_>2. 

From the operator products eq.(5.6) we derive the following anticommuta- 

tion relations: 

{bm,cn} = ~.+m, (5.9) 
{c,~,cm}={bn, bm}=O. 

Note that since we are dealing with anticommuting fields, the contour trick 

of Chapter 4 leads to anticommutators. The energy momentum tensor of 

the b ,c  system is (use eq.(4.83)) 

Tb'c(z) = -2b(z)Oc(z) - Ob(z)c(z). (5.10) 

This is equivalent to the following expression for the Virasoro generators 

(cf. eq.(3.58)): 
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O0 

Lbd c= ~ ( n -  m) " bn+mC_m : (5.11) 
"D2.----'~--O0 

Normal ordering means again that we put negative frequency modes to the 

right of positive frequency modes, taking due care of minus signs arising 

due to the Grassmann property of the ghosts. It is now straightforward to 

work out the operator product of the stress tensors with itself: 

-26 /2  2Tb,C(w) OTb,C(w) 
Tb'C(z) Tb'C(w) -- (z - w) 4 + (z - w) z + (z - w) + finite terms. (5.12) 

This shows that the central charge of the b, c system is c b,c --- -26.  Since 

c < 0 the conformal field theory of the ghost system is non-unitary as 

expected. This already follows from the negative conformal weight of c(z). 

Adding the contribution to the central charge from d bosoaic fields X~(z) 

and of the ghost fields, 

C t ° t  - -  C x + C b 'c  - -  d - 26 (5.13) 

we find again that the conformal anomaly vanishes if d = 26. The operator 

product of T b,c with the ghost fields can be easily worked out and shows 

that b and c are primary fields. 

Another important operator of the b, c system is the U(1) ghost number 

current j(z), 
j(z) = - :b(z)c(z):= ~_, z - n - l j n  (5.14) 

n 

where 

= E (5.15) 
m 

j(z) is a conformal field of dimension h = 1. Classically the ghost number 

current is conserved. In the quantum theory there is however an anomaly. 

This will be discussed in Chapter 13. The ghost charge is given by the 

contour integral of j(z): 

/C ~-~z~ j(z) = j° = ~ :c-mbrn" (5.16) 
N g -  o m 
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Thus, the ghost charge Ng of a particular conformal field ¢(z) is given by 

the singular part of its operator product with j.  

j(z) ¢ ( w ) -  (zNgw) + finite terms. (5.17) 

It follows that c(z) and b(z) have Ng = +1 and - 1  respectively. 

5.2 B R S T  q u a n t i z a t i o n  

Let us now turn to the question of how to identify physical states. We 

have seen in Chapter 3 that in light-cone quantization the longitudinal and 

timelike components of Xg are not independent degrees of freedom and 

can be eliminated. All states can be built as excitations of the transverse 

oscillators only. In covariant Polyakov quantization we keep all components 

of Xg and, in addition, have the ghost fields b and c. The excitation of the 

longitudinal and timelike components of Xg and the ghosts will now become 

part of the spectrum of string theory and we need some way to distinguish 

physical from unphysical states. The tool to do this is the BRST charge. So 

let us briefly review some general aspects of BRST quantization and then 

apply it to the bosonic string. 

BRST quantization was introduced to quantize systems with a local 

gauge symmetry G. After gauge fixing, BRST symmetry is a remnant of the 

local gauge symmetry. Let us first review the general strategy. Consider a 

system with gauge invariances generated by charges Ki which form a closed 

finite dimensional Lie algebra 1 

[Ki, Kj] = .fijkgk , i , j ,k  = 1 , . . . , d i m G  (5.18) 

with fij k being the structure constants of G. One now defines a hermitian 

nilpotent operator which commutes with the Hamiltoniaa and which acts 

1 For instance, in a Yang-Mills theory the Ki are the non-abellan generalizations of 

Gauss law. 
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on all fields like a fermionic gauge transformation. The gauge parameter is 

replaced by art anticommuting variable c z, called a ghost. This operator is 

the BRST charge Q. An explicit expression for the BRST charge is given 

by 
1 

Q = J(K~ - ¼f~jk dbk) 
X~ 

1 ghost (5.19) 
= c~(Ki + -iK~ ) 

where we have introduces so-called anti-ghosts bi which obey the following 

commutation relations with the c i" 

~ (5.20) {c',b} =~j. 

In the following, both bi and c i will be collectively referred to as ghosts. The 

first part of Q clearly acts in the required way on the fields. The second part 

is needed to make Q nilpotent. It acts like a gauge transformation on the 

ghost fields. Nilpotency of Q is easy to verify. Using the symmetry algebra 

eq.(5.18), the anticommutation relations eq.(5.20) and antisymmetry of the 

structure constants, we find without difficulty 

Q2 1 m = ~f[~jkf~lk (Jc~Jbm)=0. (5.21) 

The Jacobi identity was used in the last step. The BRST transformation 

acts on the ghosts as 

1 i c k c l ,~J= {Q,c ~} =-~Yk~ 
(5.22) 

5bi = {Q,  bi } = Ki  - f i j  k c j bk = K i  + K gh°sts = / ( i .  

One now shows that 

[k~, ~ 1  = y~k Kk (5.23) 

i.e. the /~i  also satisfy the symmetry algebra but, in contrast to the Ki ,  

also incorporate the ghost degrees of freedom. The ghost contribution to 

the action can be written to be the BRST transformed of a term of the 

form biFi where Fi is called the gauge fixing function; i.e. /~ghos t  ,,~ (5(biFi). 
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This guarantees the BRST invariance of the total action. BRST invariance 

is thus a symmetry  of the gauge fixed action. Finally, one also introduces a 

ghost number  operator  
d imG 

Yg = -  E bi c i. (5.24) 
i=1  

c i and bi have ghost number +1 and - 1  respectively. 

Let us now consider the Hilbert space of the theory. Eigenstates of the 

Hamiltonian are said to be BRST invariant if they are annihilated by Q: 

Qt¢) = 0 .  (5.25) 

States which satisfy eq.(5.25) are gauge independent, a necessary require- 

ment for physical states. There are two types of BRST invariant states. 

First, any state of the form 

I¢) = QI~) (5.26) 

is trivially BRST invariant due to the nilpotency of Q. The states I¢) and 

IA} form a BRST doublet. They differ in ghost charge by one unit. I¢} 

has zero norm, due to the hermiticity and uilpotency of the BRST charge: 

{)~IQQI)~) = 0. These states decouple in S-matr ix  elements. (Recall that  Q 

commutes with the Hamiltonian.) Therefore we have to look for states of 

the form 

QI¢) = o, I¢) # QIA). (5.27) 

They are BRST singlets. These states will henceforth be referred to as 

physical states. Two states I¢} and I¢'} are said to be equivalent if 

I¢) - I ¢ ' )  = QI,~). (5.28) 

The equivalence classes are called BRST cohomology classes. Clearly, all 

states within one given cohomology class have the same ghost number.  S- 

nlatrix elements are independent of which representative of a cohomology 

class one uses: {¢1]S[¢2} = (¢~]S[¢~), for ¢ and ¢' related as in eq.(5.28). 
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If ]¢) ---- ¢10) is a physical BRST singlet, then [Q, ¢] = 0. For states 

without ghost excitation this implies [Ki,¢] = 0. Those are the states 

identified with physical particles. 

Let us now apply the BRST formalism to the bosonic string. In distinc- 

tion to the case of gauge theories with finite dimensional symmetry groups, 

we are now dealing with the infinite dimensional Virasoro algebra. Ex- 

pression such as the BRST charge and the ghost number must be normal 

ordered and a normal ordering constant will appear. Finally, nilpotency 

of the BRST charge, which contains the symmetry generators, might be 

anomalous. Let us start  with the BRST charge. The generalization of 

eq.(5.19) to the case of the Virasoro algebra is 

oo 1 co 

m = - o o  n=-oo  (5.29) 

1 _ b,c a~hm ] 
m 

In the first line we have used the explicit form for the structure con- 

stants of the Virasoro algebra: f inn p : ( m -  n)6p,m+n, n(bm 'c) was given in 

eq.(5.11). We already know from Chapter  3 that  Ltm °t : L z + Lb'~ - a6m 

satisfy the Virasoro algebra and tha t  the central charge vanishes if a = 1 

and d = 26. Ltm °t corresponds t o /< i  in eq.(5.22). 

Q can be equivalently written as a contour integral: 

= x + Q 

(5.30) 
=/C0 dz jBRST(Z)" 

The operator jBRST(Z) is the BRST current. Eq.(5.30) defines it only up 

to a total derivative which must however be of dimension one and ghost 

number one. The most general form is then 

jBt~ST = c T  (x) + lcT(b 'c )  + ~c 92c. (5.31) 
.4  
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Requiring the BRST current to be a conformal field of weight one gives 
3 

Let us now check the nilpotency of the BRST charge Q which is crucial 

for the identification of physical states. One finds (L t°t -- L z + L b,c) 

Q2 1 1 ~ ntnot ] )Lm+n)C_mC_n (5.32) = ~ { Q , Q } = ~  ~ ([Ltm °t, - ( m - n  tot 

7r~, } n = - -  OO 

which implies that Q2 = 0 if the conformal anomaly vanishes, i.e. for d = 26 

and a = 1. One can also show that Q2 = 0 implies the vanishing of the 

conformal anomaly. 

It is now easy to work out the BRST transformation properties of the 

various fields. We find 

[Q,X~'(z)] =cOX*'(z), 
1 

[Q, Tt°t(z)] = ~22 (d -  26)03c(z) 

{Q,c(z)} =c&(z), 
(5.33) 

{Q,b(z)} = T t ° t ( z ) ,  

where T t°t = T X + T b'c. Expressed in terms of modes they are 

[Q, ~1 =-Enc. .~.- . . ,  
m 

[Q, Ln] = -~2  ( d -  26)n(n 2 -  1)cn , 

{Q, cn}=-E(2n+m)c-mcm+n, 
m 

(5.34) 

{Q,  bn} = r, t°t 

It is now straightforward to verify that the total action 

S = S x + S b'c 

1 (cgXOX + + 
= 4-# / 2ba  23 ) 

(5.35) 
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is invariant under BRST transformations. Alternatively, we could have 

followed the procedure common in gauge theories and chosen a gauge fixing 

function. The gauge fixing function leading to the action eq.(5.35) would 

have been F ~ = v/-hh ~/~ - 77 ~/~. 

Let us now turn to the problem of identifying physical states. We again 

demand tha t  they are BRST singlet states, i.e. QI¢) -- 0 but I¢) # QIA/• 

According to our discussion in Chapter  4, a state i¢) is created from the 

SL2 invariant vacuum by a local vertex operator: [¢/ = ¢(0)[0). BRST 

invariance then implies that  

[O, ¢(z)] = = ~iJBRST(W)¢(Z)= total derivative (5.36) 

i.e. the operator product of jBRST and ¢ must not have a pole of order 

one, unless the residue is a totM derivative, in which case it vanishes upon 

integration over the insertion point of the vertex operator. Then correlation 

functions will be BRST invariant. Consider states without ghost excitations. 

Then 

-~i JBRsT( W ) ¢( Z ) 
f dw ¢ 

= _ ? ~/~c(w)T (w)¢(z) 

_ i  dw r h+_~(z)_ 
- 7-77~i<:::(~)1.(~ z)2 + - -  

= h¢(a,=)¢(z) + ~a¢(z) 

0¢(z) 
W - - Z  

-b . . . ]  (5.37) 

which is a total  derivative whenever the conformal weight of ¢ is h¢ - 1. 

We have thus found that  pr imary fields of dimension one create asymptotic 

BRST invariant states. 

Let us finally look at the ghost sector of the theory. Both b and c have 

zero frequency components which satisfy the anti-commutation relations 

b 2 -- c02 - 0 and {Co, b0} --- 1. b0 and Co commute with the Hamiltonian L0 

(cf. eq.(4.35)). There are then two degenerate states. One, denoted IT), is 

annihilated by Co; the second is then defined by [~) = bo[ T): 
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col r )  - 0 bolt )  = 0 
, (5 .38)  

bol T> - I t> c011> - IT>, 

These states clearly have zero norm. They differ in ghost number by one 

unit. Since the normal ordering of the zero frequency term in eq.(5.16) is 

arbitrary, we can choose it to be symmetric; i.e. 

1 
Ng = ~(c0bo - b0c0) + ~ (~_~b~ - b _ ~ ) .  (5.39) 

m>0 

1 With this convention the states IT) and It) have ghost charge +½ and 

respectively. 

On the other hand we notice that the SL2 invariant ghost vacuum [0)b,c 

obeys eq.(5.8). This however means that while being a highest weight state 

of the Virasoro algebra, it is not a highest weight state of the b, c algebra 

since it is not annihilated by all the negative frequency modes: 

cll0)b,c -- c(0)10)b,c # 0. (5.40) 

10)b,c is not the ground state of the ghost system. The Since [L0, cl] = -c l ,  

state 

cocllO)b,~ 

has also L0 eigenvalue -1;  i.e. 

= -coc(0)10)b,c # 0 (5.41) 

the two states cl]O)b,c and cocllO)b,c are 

degenerate. It is easy to see that if we identify cllO)b,c = It) and coc~lO)b,c = 
IT), we can verify the relations eq.(5.38) and their ghost number assignments. 

In addition, we find that (T IT) = ( ~ ] l )  = 0 and (T I l) = ( l i T )  = 

b,c(OIc_lcocllO)b,c ¢ O. We choose the normalization such that 

b,c(Olc_~cocllO)b,c = 1. (5.42) 

This shows that the SL2 invariant vacuum carries three units of ghost num- 

ber. They correspond to the three global diffeomorphisms of the sphere 

(compactified plane), generated by L0, L+I. Since correlation functions are 

invariant under SL2 (cf. Chapter 4), the gauge fixing is not complete which 
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is reflected by the presence of ghost zero modes. For details we refer to the 

following chapter  where we learn how to deal with the ghost zero modes in 

the computat ion of scattering amplitudes. 

Physical states are characterized by BRST cohomology classes of some 

definite ghost number.  We can build states on either of the two ghost ground 

states [1") a n d [ l ) .  Let us consider states of the form 

I¢) = [¢>x ® I~)b,c. (5.43) 

BRST invariance of this state then requires 

QI¢) -" (co( LX - 1) -t- E c -nLX) l¢ )  -~ 0 (5.44) 
n>0 

which is equivalent to the physical state conditions 

(L z - 1)1¢>x = 0 and LXl¢)x - 0 ,  for n > 0. (5.45) 

Had we instead taken the state I $), we could not have obtained the condition 

(n x - 1) - - 0  since c01$) - 0 .  BRST invariant states are then of the form 

I¢) = I¢)x ® I1) = I¢)x ® (cllO)b,c) (5.46) 

where I¢)x is a highest weight state of the Virasoro algebra with L0 eigen- 

value -t-1. The corresponding vertex operators are 

¢(z)  = ¢(z)c(z).  (5.47) 

One easily shows that  

[Q, ¢(z)] --- ( h e -  1)(Oc)c(z)¢(z) (5.48) 

which vanishes for he - 1; i.e. if ¢(z) with he -- 1 satisfies eq.(5.37), c¢(z) 

commutes with Q without any derivative terms. The fields c¢(z) then have 

zero conformal weight. 

As an example, consider the tachyon with 

I¢)x = I k) = lim : expik~,X~' (z ,~) ' lO)x .  (5.49) 
z~5-~O 
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The mass operator is now H -- Lt0 °t -- L0 x + L~ 'c. Since the ghost ground 

state gives L~'Cl l) -- - I  l) ,  we have H - L X -  1. Therefore we can a t t r ibute  

the negative (mass) 2 of the tachyon to the ghost contribution to the string 

spectrum. 
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Chapter 6 

G l o b a l  A s p e c t s  o f  S t r i n g  P e r t u r b a t i o n  T h e o r y  a n d  

R i e m a n n  S u r f a c e s  

In this chapter we want to study some issues which are of relevance for 

the perturbation theory of closed oriented bosonic 1 strings. Global aspects 

of the string world-sheet were addressed by Friedan [1] and Alvarez [2]. 

The role of modular invariance for closed string loop calculations was first 

discussed by Shapiro [3]. Some reviews which influenced the presentation 

in this chapter and further extensions of these topics are refs. [4, 5, 6]. In 

the following we will assume that a Wick rotation of the world-sheet and 

the embedding space has been performed, so that both the world-sheet and 

the d-dimensional space have Euchdean signature. 

Fig. 6.1. Tree level scattering of four closed strings 
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1The restriction to oriented strings entails that all the surfaces we are considering 

below are orientable. 



Consider as an example the tree level scattering amplitude of four closed 

strings shown in figure 6.1. The interactions of strings result from their split- 

ting and joining. The corresponding world-sheet has tubes extending into 

the past and the future corresponding to incoming and outgoing strings. In 

the Polyakov formulation 2 the scattering amplitudes are given by a func- 

tional integral over oriented surfaces bounded by the position curves of the 

initial and final string configurations, weighted with the exponential of the 

free action (Polyakov action) and integrated with the string wave functions. 

The key observation is now that conformal invariance allows to consider 

compact world-sheets instead of surfaces with boundaries corresponding to 

incoming and outgoing strings. The incoming and outgoing strings can be 

conformally mapped to points of the two-dimensional surface (see figure 

6.2). 

Fig. 6.2. Map of asymptotic string states to points on the sphere 

Consider, for example, the case of a world-sheet with only one incoming and 

one outgoing string, described by a cylinder with metric ds 2 = dr 2 -t- d~ 2, 

- co  < 7" < ~ ,  0 < ~ < 2~'. Taking v -- Inr this becomes ds 2 -" r -2(dr  2 + 

r2dff2). The incoming string (r = -co)  has been mapped to the point 

2We will only discuss the Polyakov formulation for the calculation of string scattering 

amplitudes and not the older operator approach. They do lead to the same results. 
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r = 0 and the outgoing string (r  = +co) to r = oo. The string world- 

sheet has been mapped to the plane. A suitable choice of a conformal 

factor maps the plane to the sphere. We rescale the metric by 4r2(1 -b 

dr2+r2dc ,2 4dzd5 where z - -  r e  i ~  This is the r2) -2 and get d~ 2 -- 4 (l+r2) 2 -- (l+[z[2) 2 

standard round metric of the sphere, stereographicaUy projected onto the 

plane. Indeed, with z -- cot(~)e i¢ we find d~ 2 - d0 2 + sin 2 0de 2. The 

incoming and outgoing strings are now finite points, namely the south and 

north pole of the sphere. For more complicated string diagrams with several 

incoming and outgoing strings, the conformal factor can always be chosen 

to map all of them to points on the sphere. This remains also true for loop 

diagrams (cf. below) where the external strings are mapped to points on 

spheres with g handles if g is the number of loops. The quantum numbers 

of the external string states are generated by local operators inserted at 

these points. These are the vertex operators introduced in Chapter 4. In 

summary, performing the conformal mapping, the world-sheet becomes a 

two-dimensional surface with the incoming and outgoing particles inserted 

by local vertex operators. In this sense vertex operators can be viewed as 

conformal projections of asymptotic states. It is however only known how 

to construct vertex operators for on-shell states. 3 Then string scattering 

amplitudes of on-shell particles are correlation functions of vertex operators. 

Analogously, the one loop scattering amplitudes are described by world- 

sheets with one "hole" (handle) as shown in figure 6.3. A four-point multi- 

loop diagram is drawn in figure 6.4. 

Two dimensional surfaces are topologically completely characterized by 

their number g of handles in terms of which the Euler number is given as 

X -- 1 f x/~R d2cr -- 2(1-g) .  The number of handles is also called the genus 

of the surface. In summary, a n-point, g-loop amplitude is described by a 

3In previous chapters we have seen how the requirement of conformal or BRST in- 

variance puts them on shell. 
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Fig.6.3 One loop scattering of four closed strings 

]Pig.6.4 Multiloop scattering of four closed strings 

two-dimensional surface with g handles and n vertex operator insertions. 

Then, using the prescription of Polyakov, a general n-point amplitude 

cart be computed as the following path integral: 

An= ~ 
g=O 

= ~ fvhvx"fd~z,...a~z,, V(z,,~)...V(z,,,~,,)~-sIx,~J 
g=O 

= E f d2z' ""d2zn (V(z,,F.,)... V(zn,~.n)) 
g=0 

(6.~) 
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where we sum over all topologies of the world-sheet and integrate over the 

insertion points of the vertex operators. A0 is called the parti t ion function 

and is commonly denoted by Z. 

Since the action S is invariant under conformal transformations and 

diffeomorphisms of the world-sheet, this integral is highly divergent; one 

integrates infinitely many times over gauge equivalent metric configurations. 

Therefore, in order to get rid of this overcounting one has to divide the 

measure in eq.(6.1) by the volume of the symmetry group which is generated 

by diffeomorphisms and conformal rescaling. Here and below we will always 

assume tha t  we are in the critical dimension. 

We have seen in Chapter  2 that  the Polyakov action does not depend 

on the Weyl degree of freedom of the metric. This classical result was also 

found to hold in the quantum theory in the critical dimension. Locally 

we can choose isothermal (or conformal) coordinates, in which the met- 

ric takes the simple form ds 2 = 2e ~ ((do-l) 2 + (dcr2) 2) which, in terms of 

complex coordinates z -- ~1 + i~r2 becomes ds 2 - 2e~dzdh. The factor 

2 has been introduced for convenience to get hz~ -" h~.z -- e ~. Confor- 

mal transformations z ---, f ( z )  and 5 ---+ / (5)  only change the conformal 

factor e ~. However, we also know that  if the operator p t  defined in Chap- 

ter 2 has zero modes, then there exist metrics on the world-sheet which 

are not conformally related, i.e. they cannot be obtained from each other 

by reparametrizations and Weyl rescaling. They are said to have differ- 

ent conformal structures. All metrics which are conformally related will 

take the form ds 2 = 2e 'rdzd2 in some fixed coordinate system. Confor- 

really unrelated metrics will however take the form ds 2 = 2e ~ ]dz + #dh[ 2 

in that  same coordinate system. # = #~.Z(z, ~.) is called a Beltrami differ- 

ential. If we make an infinitesimal change of coordinates to z --~ z + 5z 

where 5z is not a globally defined vector field, we find, to first order in 

5z, ds 2 = 2e ~ ( 1 +  ~ z  z + ~ ) d z + ~ Z d 2  2 a n d #  z = ~ .  Under these 
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transformations the metric changes as 5 h ~  = dSz --6Fz ~z~. = I~Zhz~ and we find 

# z = hZ~Sh~" (6.2) 

The conformal structures are distinguished by a finite number of parameters 

called moduli,  denoted by r i. They take value in the moduli space .Mg. The 

moduli space is the space of all metrics divided by all conformal rescalings 

and diffeomorphisms: 

(metrics} 
.hdg = (Weyl rescalings} × {diffeomorphisms} " (6.3) 

We can then write the change of the metric as hZ~Shzz = ~ i  5vihz~'Orihzz = 

~ i  5vi#iz ~" The number of moduii, i.e. the dimension of moduli  space, 

depends on the genus of the surface in a well defined way as we will explain 

below. The integral over metrics will then reduce to a finite dimensional 

integral over the moduli. We will discuss the integration measure in more 

detail below. 

If we cover the world-sheet by conformal coordinate patches Us, then 

on the overlaps the metrics will be conformally related, i.e. the transition 

functions on the overlaps are analytic and the complex coordinates are glob- 

ally defined. A system of analytic coordinate patches is called a complex 

structure, which, as we have now seen, is the same as a conformal struc- 

ture. A two-dimensional (topological) manifold with a complex structure 

is called a Riemann surface £7g where the subscript denotes the genus. We 

have thus seen tha t  the theory of Riemann surfaces will play an important  

role in string per turbat ion theory. 

Since we have globally defined complex coordinates we can define on any 

Riemann surface vectors VZOz and V~'O~ and 1-forms Vzdz and V~d2 and in 

general tensors with components VZ"'z~'"'~'z...z~....~.. Since the indices z and 

range only over one value all tensors are one component objects. Denote by 
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T(~,~) (re,m) a tensor with n(~) upper z(2) and m ( ~ ) l o w e r  z(5) indices. Under 

conformal transformations it transforms with weight (h = m - n ,  fz : ~ - ~ ) .  

Its conformal spin is h - h : (m - n) - (rh - ~). The non-vanishing metric 

component hz~, and its inverse h z~" allow one to convert upper ~, indices into 

lower z indices and vice versa. It follows that  any tensor can be writ ten 

with one type of indices only, say z. Such a tensor is called holomorphic. 

A holomorphic tensor with p lower and q upper indices is said to have 

rank n = p - q. Its rank is also equal to the conformal weight h and to the 

conformal spin (since h = 0). A rank n holomorphic tensor transforms under 

analytic coordinate transformations as T(z,£:) ---+ (e / -~ , ) '~T( f ( z ) , / (5 ) ) .  

From now on we will only consider holomorphic tensors. We will call the 

space of holomorphic rank n tensors T(n). Note tha t  elements of T (n) are 

in general functions of z and ~,. An analytic tensor is a holomorphic tensor 

whose components depend only analytically on the coordinates in each local 

coordinate chart. 

We now define a scalar product and norm on T (~) by 

and 

(V('0IW('0) = f d2zv'~(hZ~') nV('~)*W('O (6.4) 

(6.5) 

where V (~), W (~) E T 00. This is the only possible covariant local norm. We 

note tha t  it is invariant under Weyl rescalings of the metric only for n - 1. 

We can now define covariant derivatives. As connection we take the 

usual Levi-Civita connection with the Christoffel symbols as connection 

coefficients. In conformal coordinates only two of them are non-vanishing, 

namely 

Fzz z = c90. , F~, ~ = 050 . (6.6) 

104 



and the Riemann tensor for a conformally fiat metric is (recall tha t  in two 

dimensions the curvature tensor has only one independent component) 

2 
= OOhz~ - hZ~Ohz~ Ohz~ (6.7) 

where Rz~, is the Ricci tensor and R the Ricci curvature scalar 

R = -2hzSOOln hz~, 

= _2e_O.OOcr" (6.8) 

We now have the following covariant derivatives: 

V(z ~) • T(,O __+ T(~+I) . 

V~.) " T (') ~ T (~'-x) " 

% " ) T ( ° ) ( z , 2 )  : (a- (6.9) 

V~.~)T('0(z, 2) : hZ~ V~ T OO = h z~ $Y('~)(z, 2) 

(6.1o) 

which are nothing but the ordinary covariant derivatives with connection 

coefficients eq.(6.6). They commute with holomorphic coordinate changes. 

(V(z x) is the operator P of Chapter 2.) The adjoint of V ('0 is defined as 

(W("+I)IV(z'~)V (~')) = (V(n)tW('~+I)]V('O). We find 

t = (6 .11)  

The Ricci identi ty is also easy to derive: 

z (n) w(~-l)wz ] -~nR (6.12) [V(,+I)V z _ 1 --z *(n)l = ' 

The complex geometry we have just  introduced can now be used to 

get more information about the moduli space M g  associated with the Pale- 

mann surface ~g .  Consider an arbi trary infinitesimal change of metric (cf. 

Chapter 2): 

5hoq 3 = Abel 3 + VaV¢~ + V~Va + E Ag~.hazS"ri • (6.13) 
' ' 2  
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The first term corresponds to a Weyl rescaling, the second term to a 

reparametrization, parametrized by a vector field Va, and the last term 

to changes of the conformal structure parametrized by the variation of the 

moduli parameters 7= i. They can, by definition, not be compensated by 

Weyl rescalings and diffeomorphisms. The transformations eq.(6.13) are in 

the tangent space to the space of metrics at ha/3; we will denote it by T(h ). 

What we want is an orthogonal decomposition of T(h ). We absorb the trace 

parts of reparametrizations and variations of the conformal structure in the 

Weyl rescaling by redefining A --~ A - VTV 7 - ½h 76 ~i(OrlhT~)~Ti and get, 

in conformal coordinates 

6hz~ = Ahz~ 

6hzz = V(z+l)Y~ + E/Svi#  iz~ (6.14) 
i 

where #zz=Orihzz = i  hz~l~z. i~ We see that the changes of hz~ can always be 

written as Weyl rescalings. Eq.(6.14) is not an orthogonal decomposition of 

T(h ). Let us define a basis ¢/zz which spans the orthogonal complement of 

V(z +1) in T(h ). Using eq.(6.4) this means that 

(¢i z I v i vz 

for arbitrary V. This is the case if and only if 

0 = = = 0 .  ( 6 . 1 6 )  

This means that the ¢izz are global analytic tensors of rank 2; they are 

called quadratic differentials. Therefore the dimension of moduli space is 

equal to the number of linear independent quadratic differentials on a given 

Zg. In other words, the quadratic differentials span the kernel or the space of 

zero modes of the operator (V(z+l)) t = -V(Z+2). We then have the following 

orthogonal decomposition of T(h): 

T(h ) = {Ahz~} @ {imageV(z +1) } @ {kerV~+2)} E~ c.c. (6.17) 
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In contrast to the # i  the ¢i are not tangent to the gauge slice. We can write 

eq.(6.14) in this orthogonal basis. To do this we have to project the #i on the 

space spanned by the ¢i. The projection operator is P - r ,  i j  I ¢ i ) M i j ( c J l  

where (M -1) i j  = (¢i1¢j). (The ¢i are not necessarily an orthonormal basis 

of ker V~+2). ) Using this we get 

'z = + E 6 / ( ( 1  - P) zz) i 
i { i 

(6.18) 

i i 

for some vector fields ~i and finally 

6h~z = V(z+l)v~ + ~ 6riCzk~Mki(¢-/I/~ i) (6.19) 
ijk 

where we have shifted Vz + gi 6~'~ V~ and used (~,~lcJ) = / d2z ,,i~'J --'+ ~ ~ z z  

which does not depend on the metric but only on the conformal class. 

The kernel of V(z +I) is spanned by tensors 6 T (I) satisfying 

v ~ + l l v z  = hz~.OV:" = 0 (6.20) 

which defines conformal Killing vectors V ~. They are globally defined vector 

fields which span the kernel of V(z +1). They generate the conformal Killing 

group (CKG), the group of conformal isometries. The diffeomorphisms 

generated by them can be completely absorbed by Weyl rescalings. 

The question of how many moduli parameters ~-{ exist for a compact 

Riemann surface of genus g can be answered with the help on an index 

theorem, the Riemann-Roch theorem, which we will state without proof. If 

we define the index of V (n) to be the number of its zero modes minus the 

number of zero modes of its adjoint V z then the theorem states that (n+l)' 

indV! n) = dimker V(z n) - dimker V(Z+l) = -(2n + 1)(g - I). (6.21) 
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This tells us tha t  the number of complex moduli parameters minus the 

number of conformal Killing vectors is (n - -t-1) 3g - 3. X - 2(1 - g) is the 

Euler number  of Sg. 

It is not hard to find the number of conformal Killing vectors for any 

compact Riemann surface. They have to be globally defined analytic vector 

fields whose norm is finite: 

/ s  d2 zv/hhz~. V z v  ~" - finite (6.22) 
g 

where V z = ~n  Vn zn. On the sphere (g=O) the metric is ds 2 4dzd2 
- ( l + l z l ~ ) ~ .  

It then follows tha t  there are three independent conformal Killing vectors: 

Oz, ZOz and Z2Oz. To show these fields are also well behaved at oo we 

study their  behavior at w --+ 0 where w = 1/z: -W2Ow,-WOw,-Ow. 
They are the only holomorphic vector fields which axe well-behaved at the 

origin and at infinity. They correspond to the transformations generated 

by L0 and L+I. The conformal Killing group is thus SL(2, C), as follows 

from our discussion in Chapter  4. From the Pdemann-Roch theorem we get 

for the dimension of moduli space dim.A40 = 0; i.e. there are no moduli 

parameters.  All metrics on the sphere are conformally equivalent and there 

is a unique Riemann surface at genus zero. In the same way tha t  we have 

shown dim kerV(z +1) = 3, we can show that  dim kerV~2 ) = 0. In fact we 

easily find tha t  dim kerV (n) = 2n + 1 and dim kerV~n ) = 0 (for n > 0) 

thus verifying the Riemann-Roch theorem explicitly for the case g = 0. For 

g > 0 we use the Ricci identity eq.(6.12). Then for V (n) E kerV(z n) 

o= (°)) 

= _(V (~) V z V(~)V(n)~ ( n + l )  z ) 

1 vT(n-1)VTZ ~nR)V(n) = -  (Y(~)](V~+l)V(z~)+ v z v(~)-t- ) (6.23) 
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The torus (g = 1) admits  globally a flat metric ds 2 = dzds,  i.e. R = 0 and 

we find tha t  cgzV ('~) = cO~V (~) - 0, i.e. V ('0 = coast, and dim kerV(z '~) = 1. 

For n = 1 this is just  the generator of complex translations generating 

the conformal Killing group U(1) × U(1) of the torus. This group has one 

complex generator and therefore, by the Riemann-Roch theorem, the torus 

is described by one complex modulus v. To get information about higher 

genus surfaces we use a result from the theory of Riemann surfaces which 

states tha t  any Riemann surface with g > 1 admits a metric with constant 

negative curvature. We conclude tha t  dim kerV(z '0 -- 0 for g > 1, n > 0 

and dim kerV~,~+l) = (2n + 1)(g - 1). For n -- 0 dim kerV(z °) is spanned 

by constant functions. We can then complete the following table, valid for 

n > 0. To get the results for n < 0 we use dim kerV(z -~) = dim kerV~, 0. 

Table  6.1: 

g 

0 

1 

> 1  

dim kerV(z ~) 

2 n + l  

1 

1 for n = 0  

0 for n > 0  

dim kerV~,~+l) 

0 

1 

g 

(2n + l)(g- I) 

Let us now investigate the difference between two conformally inequiv- 

alent tori more carefully. Heuristically, the fat and the thin torus, depicted 

in figure 6.5 are conformally inequivalent; roughly speaking, the modulus 

is given by the ratio of the two radii of the torus. More precisely, consider 

the complex z-plane and pick two complex numbers A 1 and A2 as shown in 

figure 6.6. The torus is defined by making the following identifications on 

the complex plane: 

Z ~ Z + r~/~ 1 + m)~2, r~, m E Z, , A1, A2 E C .  (6.24) 

Since )u, )~2 are rescaled and rotated by the conformal transformation z I = 

it is clear tha t  only their ratio v = ~_z can be a conformal invariant. We ~Z 
A1 
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Fig.6.5. Two conformally inequivalent tori 

I'  
L. 
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. J  
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11 ~ .  " ~  / 
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2 I ~ s  

d ~" t 

I 
I 

t 

Fig.6.6 Definition of the two-dimensional torus by the complex numbers A 1 and A2 

can therefore set A] = 1 and also, because of the freedom of interchanging 

A2 and AI, we may restrict Im v > 0. The tori are thus characterized by 

points v in the upper half plane as illustrated in figure 6.7. where opposite 

sides of the parallelograms are identified: 

z ~ z + n + m v  n, m E Z .  (6.25) 
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T r + l  / /  
1 

Fig.6.7. Definition of the two-dimensional torus by the complex number ~" 

r is called Teichm~tler parameter  and describes points in Teichm/iller 

space which for the case of the torus is the upper-haLf plane. Teichm/iller 

space is the space of classes of conformally inequivalent Pdemann surfaces 

and has the same dimension as the moduli space we are eventually looking 

for. It is, however, not quite true tha t  r is a con_formal invariant that  cannot 

be changed by rescalings and diffeomorphisms. The reason is tha t  we must 

also consider global diffeomorphisms which cannot be smoothly connected 

to the identity. They leave the ~orus invariant but  change the TeichmiiUer 

parameter v. The global diffeomorphisms are the following operations on 

the torus. Cut the torus along the cycle a indicated in figure 6.8, twist 

one of its ends by 27r and glue them back together. Points that  were in a 

neighborhood of each other before the twist will be so after the twist. Yet 

this twist is not connected to the identity. The same can now also be done 

along the cycle b. These operations are called Dehn twists and generate 

all global diffeomorphisms of the torus. The action on r of a Dehn twist 

around the a cycle is shown in figure 6.9. In terms of A1, A2 it corresponds 

to A 1 --+ A1, A 2 --+ A 1 -~- A2, which means r --, ~- + 1. A Dehn twist around 

the b cycle is shown in figure 6.10. To bring the transformed parallelogram 

into s tandard form we have to rotate and rescale it. Under the combined 
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Fig.6.8. The two independent cycles on the torus 

T T+I 

1 

Fig.6.@ Action on ~" of the Dehn twist around the a cycle 

1 

Fig.@.lO Action on ~" of the Dehn twist mound the b cycle 
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T transformation we have v --~ 7-4-~" This again follows easily from the action 

on ~1, A2 • A1 ~ AI+As,  A2 --+ A2. The two transformations 7---+ v + l  
T and 7- ---+ ~ generate the group S L ( 2 ,  Z): 

I a ~ ' + b  a , b , c , d  E Z, 
~- --* w -- (6.26) 

cT + d  ' a d - b e =  l .  

Indeed, a general transformation is A1 --* dA1 + c2~2, A2 ~ b)u + aA2 and 

the condition ad - bc = 1 preserves the area of the parallelogram. Since 

the twoSL(2,  Z) m a t r i c e s ± ( :  bd) generate the same transformation of 

T, the group of global diffeomorphisms, called the modular group for the 

toms, is S L ( 2 ,  Z)/Z2 = P S L ( 2 ,  Z). We have thus learned that the param- 

eter T, subject to the equivalence relation eq.(6.26), describes conformally 

inequivalent tori. Therefore, the moduli space of the toms is the quotient 

of Teichm/iller space and the modular group: 

Teichm/iller space 
M1 -- modular group (6.27) 

The Dehn twists correspond to the following SL(2, Z) matrices: D a  = 

(10 11)and D b = ( :  : ) .  Instead of the two Dehn twists, one often 

uses the following transformations as the generators of the modular group: 

T :  T --+ r - t - 1  

1 (6.28) 
S • 7- ----+ - - - -  

T 

T We note that T S T  • T --~ 7-4T" Any element of SL(2, Z) can then be com- 

posed of S and T transformations. Any point in the upper half plane is, via 

a S L ( 2 ,  Z) transformation, related to a point in the so-called fundamental 

region ~" of the modular group. It is given by 5 r -- {-½ < Re v _< 0, IT 12> 

1U 0< R e r <  ½, t7-12> 1}. .T is shown in figure 6.11. 

It is the moduli space of the torus and points in 9 v describe inequivalent 

tori. Any non-trivial modular transformation takes v out of the fundamental 
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-1 .1 0 1 1 3 2 
2 2 2 

Fig.8.11. Fundamental region ~ in Te:.chmiiller space aad its images under S and T 

region. The t ransformat ion 5' maps the fundamental  region onto 2r5 shown 

in figure 6.11. T maps ~" onto ~'T- Of course, any image of ~r can serve 

equally well to parametrize the moduli  space ,~dl. Note tha t  the modular  

group does not act freely on modular  space: it has fixed points, r = i is 

1 $2 _ 1 and r = e 2 i~r /3  of S T  • ~" ~ 1 a fixed point  of S • r ~ - 7 ,  - r + t ,  

(ST) 3 = 1. Because of these fixed points .Adt is not a smooth manifold but  

rather a so-called orbifold with singularities at the fixed points. 

It is obvious, since it is irrelevant which fundamental  integrat ion region 

we choose, tha t  the integrand of one-loop string amplitudes must be invari- 
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Fig.8.12. Cycles ai, bi as basis of first homology group H~(Zg, Z) 

ant under modular transformations eq.(6.26). This requirement of modular 

invariance plays an important role in string theory and has far reaching im- 

plications. We will encounter it in the construction of the heterotic string 

where it leads to strong restrictions on the possible gauge groups. 

Let us now turn to the higher genus case. We will do this mainly 

to introduce some commonly used language and to point out some of the 

difficulties one encounters when going to higher loops. We have seen that for 

g >_ 2 the corresponding Riemann surface has no longer isometries but 3 g - 3  

complex moduli parameters, their number being identical to the complex 

dimension of moduli space. Choose 2g linear independent cycles ai ,  b i (i  - -  

1, . . . ,  g) on ~Ug which build a basis of the first homology group H1 (~Ug, Z) = 

Z 2g. They are shown in figure 6.12. This basis has the property that the 

intersection pairings of cycles satisfy (including orientation) 

(a ,aj) = = 0 
(6 .29)  

b )  = = 

Any such basis is called canonical. Now one can also find a set of g holomor- 

phic and g antiholomorphic closed one forms wi, ¢D i which are called Abelian 

differentials. A standard way of normalizing the w i ' s  is to require: 
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fa~ = 'hi j" (6.30) cJj 

Then the periods over the b cycles are completely determined as 

fb~ ~j ~2ij. (6.31) 

~ij is the so-called period matrix of the Riemann surface; it can be shown to 

be a symmetric matr ix  with positive definite imaginary part.  The space of 

all period matrices is a complex 2 L ~ - d i m e n s i o n a l  space known as Siegel's 

upper-half  plane Hg. In fact, the J2ij can be used to parametrize con- 

formally inequivalent Riemann surfaces. However it is a highly redundant  

description, since the same surface will have in general many different ma- 

trices ~2 corresponding to different canonical bases (cf. below). Remember 

that  the dimension of moduli space is 0 for g = 0, 1 for g = 1 and 3g - 3 

for g > 2. On the other hand, the dimension of Siegel's upper  half plane 

is g ~ - ~ .  This coincides only for g = 0, 1, 2, 3. E.g. for g = 1 the period 

matr ix Dij is just  the Teichmiiller parameter  7- - Siegel's upper  half plane 

and Teichmiiller space are identical. The abelian differentials are just  con- 

stant one-forms. However, for g > 4 Teichm/iller space Tg is embedded in a 

complicated way in Siegel's upper half plane Hg - not every symmetric g × g 

matr ix corresponds to a point in Teichmiiller space. This embedding prob- 

lem and its formal solution can be phrased as the solutions to complicated 

differential equations (the so-called KP equations). We will not discuss this 

problem any further. 

The second source of redundancy has to do, analogous to the one loop 

case, with the reduction of Teichmiiller space Tg to the moduli  space Mg, 
i.e. to find a fundamental  region in Tg. In general, moduli  space is obtained 

by dividing Teichmiiller space by the group I2(£7) of disconnected diffeo- 

morphisms of Sg. This group is known as mapping class group (MCG) so 

that  we have the following relations: 
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J~gh 
Tg = Weyl x Diffo 

M g h  = .... Tg  (6.32) 
Mg = Weyl × Diff MCC 

Diff 
MCG - 

Diff0 

Here .Mg h is the space of all metrics on ,Ug and Diff0 the diffeomorphisms 

connected to the identity. 

A subclass of the mapping class group is the group of modular  trans- 

formations which act non-trivially on a given homology basis. Suppose two 

canonical bases of the same Riemann surface are related by 

where A, B, C, D are g × g matrices. To preserve eq.(6.29) the matr ix  

in eq.(6.33) must  be a symplectic modular  matr ix with integer coefficients, 

i.e. an element of Sp(2g, Z). These transformations are the analogue of the 

one loop modular  transformation; indeed, for g = 1 Sp(2, Z) = SL(2, Z). 

We can now compute the t ransformation of ~ij made by the change of 

homology basis such that  

wj = 6ij . (6.34) 

f --i t = Wk(G ~ + D)kj and the new period matr ix  is then It then follows tha t  wj 

~?'= ( d ~  + B)(C~ + D) -I .  (6.35) 

The generators of modular  transformations are the Dehn twists along 

the homologically non-trivial curves of figure 6.13. We have two generators 

for each handle and one generator for each curve Linking the holes of two 

consecutive handles. 

As in the torus case, there is a way of representing Dehn twists in terms 

of matrices. A Dehn twist around a non-trivial curve acts non-trivially 
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al a 2 a 3 

Fig.6.13. Homologically non-trivial curves on •g 

on the homology basis. For example, a Dehn twist around al induces the 

following t ransformation on the homology basis: al ---* al, bl --* bl + al. 

Let D~, be the modular  t ransformation defined by a twist around 7. Then 

one can show tha t  the matrices Dal, Db 1, Dalla2,..., Dag, Db~ generate in 

fact all matrices of Sp(2g, Z). For the same reason as for the one loop case 

the integrand of the higher loop string amplitudes must be invariant under 

these modular  transformations.  E.g. for g = 2, the generators of Sp(4, Z) 

are given by the following 4x4 matrices: 

l i°°i l  
D :  I = 1 0 

0 1 ' Dbl = 

0 0 (, o o o) 
Da: 0 1 0 0 

= , Db2 = 
0 0 1 0 

0 1 0 1 

(i o11 o il 
0 1 

oo I 
0 1 0 

0 0 1 

0 0 0 

l ooi) 0 1 0 

- I  1 I 

I - 1  0 

(6.36) 

However, it  is impor tan t  to note tha t  the modular  transformations,  i.e. the 

Dehn twists around the homologically non-trivial  cycles do not generate the 

whole mapping class group. There are also twists around trivial cycles so 
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that  they do not affect the homology basis but nevertheless correspond to 

non-trivial diffeomorphisms. These form a subgroup of the mapping class 

group called the Torelli group. The quotient of the mapping class group 

and the Torelli group is precisely the symplectic modular group Sp(2g, Z). 

We will however not consider this subtlety since for g - 1 (which we will 

be mainly interested in) the Torelli group is trivial so that  the mapping 

class group is identical to the modular group SL(2, Z). This concludes our 

considerations about the modular transformations. 

We are now ready to discuss the integration measure. Our starting 

point is 
f.M :D h :D X 

~h Vol (Diff)Vol(Weyl) (6.37) 

where we have divided by the volume of the symmetry group. We can 

now replace the integrM over the space of all metrics by an integral over 

moduli  space, the conformal factor and the diffeomorphisms generated by 

vector fields V z. This involves a non-trivial Jacobian determinant  which 

we have already calculated in Chapter  3 where we have however neglected 

the presence of quadratic differentials and conformal Killing vectors. The 

Jacobian can be read off from eq.(6.19) and we find 

~J~g dr 2 / DXD'VDA 
Vol(Diff)Vol(Weyl) 

d e t ( ¢ l # ) d e t ( # [ ¢ )  , (+i) , z 
d e t ( ¢ ] ¢ )  det V z det  V(_I)  

(6.3s) 

where the prime indicates that  we do not integrate over the diffeomorphisms 

generated by the conformal Killing vectors as they do not change hzz. We 

treat  the ~'i as complex parameters. If we now define IMCG[ = V°l(Diff) Vol(Diff0) 
and make an orthogonal decomposition of Diff0 with 

Vol(Diff0) = Vol(Diff~) Vol(CKG) (6.39) 

we can write the measure as 

119 



1 ©XDIVDA 
IMcGI/M, d,} /Vol(Diff0 ±)vol(cKc)vol(weyl) 

(6.40) 

det(¢l#) det(#l¢)det'V(z+l)det'V~ 1)- 
× det(¢[¢) 

In the critical dimension, i.e. in the absence of a conformal anomaly, we can 

cancel f :DV'DA against Vol(Diff~)Vol(Weyl). Furthermore, we can replace 
1 ]MCG 1 J'2~4g d7"i by an integral over a fundamental region. We then get the 

following expression for scattering amplitudes: 

C~ 

An-- ~ / d 2 Z l  d2zn /$.g dvi / DX dee(el#)det(#]¢) 
g=O "'" Vol(CKG) det(¢]¢) 

x det'V~+l)det'V~_l) V(zl,Y.1, r / ) . - .  V(zn, hn, ri)e -S[z'ri] . 
(6.41) 

At tree level there are no quadratic differentials and the corresponding fac- 

tor in the measure is absent. At two and higher loop order there are no 

conformal Killing vectors. At one loop there is one of each, both being 

constants on the torus. 

As we did in Chapter 3, we can replace the Jacobian determinant by an 

integral over anti-commuting Faddeev-Popov ghosts: 

det'V(+l)det'V~_l) = / D' (bt)c~)e -S[b'c'ri] (6.42) 

where the ghost action is (cf. Chapters 3 and 5) 

1 bO~) (6.43) sIb, l = / d z(b c + . 

In eq.(6.42) we have excluded the integration over the ghost zero modes. 

The integral would vanish otherwise. We will show in the following that the 

1 det(¢Itt) det(#I¢) can be attributed to the c- remaining factors Vol(CKG) and det(¢l¢) 
and b-ghost zero modes respectively. This is in fact easy to see. The ghost 

zero modes satisfy the equations 
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0c = hz2V~_l)c = 0 

8b = hz~V~+2)b = 0 
(6.44) 

which tells us that the c zero modes correspond to the conformal Killing 

vectors and the b zero modes to the quadratic differentials. By the Riemann- 

Roch theorem, eq.(6.21), we then get 

Nb-Nc--3g-3 (6.45) 

where Nb, c denotes the number of zero modes. (Note that dimkerV~_l) = 

dimkerV(z +') as V(z ") is the complex conjugate of V~_,~).) The presence of 

ghost zero modes means that the ghost number current is not conserved. 

We will give a more detailed and general description in Chapter 13. 

Due to the anti-commutativity of the ghosts, integration over their zero 

modes will give a vanishing answer if we do not insert them into the inte- 

grand. To illustrate this, consider an anti-commuting variable ¢ and split 

it into its zero-mode part ¢0 and the remainder Ct: 

N 
¢(z,2) = ¢0(z) + ¢ ' ( z , 5 )  = ~ ¢ ~ ¢ i ( z ) + ¢ ' ( z , 5 )  (6.46) 

i=1 

where the zero mode wave functions ¢i satisfy c9¢ i = 0. (E.g. for the 

b ghosts they are the quadratic differentials.) The ~ are c o n s t a n t  anti- 

commuting parameters satisfying f d¢~ ¢~ = 1, f d¢~ -= 0. Since the action 

for ¢ does not depend on ¢0, f :D(¢(b)e  - S  will vanish unless we restrict 
N 

the integration to the non-zero modes or absorb them by inserting I I  ¢(zi) 
i=1 

into the integrand: 

i=1 - -  

where the factor de t (¢ i l~)  is relevant if the ¢i do not form an orthonormal 

basis. It renders the zero mode contribution basis independent. 
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Using this it is now easy to rewrite the string measure including the 

integration over the ghost zero modes. Let us first, for simplicity, restrict 

ourselves to the case g > 2 where there are no conformal Killing vectors. 

Using eq.(6.47) we find the following simple expression for the part i t ion 

function: 

3 g - 3  

zg>>_2 = .[7. d2~ /z)xv(b~c~) II I(~lb)l 2~-s[x'b'~'~']- (6.48) 
i=1 

Needless to say, we won't  evaluate it. 

Let us now turn  to the cases g = 0 and 9 = 1. At tree level we have no b 

zero modes (no moduli) but instead three complex c zero modes, correspond- 

ing to the conformal Killing vectors tha t  generate the group PSL(2, C). 

The zero mode wave functions were found to be 1, z and z 2. PSL(2, C) 

acts freely on the insertion points z i of the vertex operators and one can fix 

three of them, say Zl, z2 and z3, at arbi t rary points with a unique PSL(2, C) 
transformation. They  are generated by vector fields (a  + f~z + 7z2)c0z and 

we can trade the integrations over zl, z2, za for an integration over a, /3,7.  

The Jacobian is 

0(zi ,  z2, z~) 2 
~(( ,y ,  ~ = I ( z , -  z2)(z~- z~)(z~- z~)l 2 . (6.49) 

The integration over a,  fl, 3' then cancels the Vol(CKG) factor. Note tha t  the 

Jacobian is also jus t  det(Vi(zj)) where {yi} = {1 ,z ,z  2} are the conformal 

Killing vectors (which are orthogonal to each other). More importantly,  it 

can be wri t ten as 

l(O14z~)4z~)~(z~)lo)12= ](Olc-lcocl]O)12det 
1 I I "I 2 

L z3 z2 Zl 

(6.50) 

= l(zl - z=)(zl- z3)(z~ - z3)l 2 

where we have used results from Chapter 5. For tree level amplitudes this 

means that the presence of conformal Killing vectors is taken care of if we 
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drop the integration over the positions of three of the vertex operators and 

multiply each of them by c(zi)~(Si). We know from Chapter  5 tha t  if f V is 

BRST invariant, then so is c~V. Tree level scattering amplitudes then take 

the form: 

Agn =0 = f 
j p x 19( b~ce)cev (zl, ~1 ) cev (z2, ~2 ) cev (z3, ~3 ) 

7 l  

× iI-[4/ d2zi V(zi, Si)e-S[X'b'c] 
• = (6.51) 

n 

= ( V ( z l , ~ ) c ~ V ( z 2 , ~ ) c e V ( z 3 , ~ 3 )  I I  f a 2 z ~ V ( z ~ , ~ - ~ ) )  . 
i = 4  

If we have less than three vertex operator insertions we cannot completely 

factor out the PSL(2, C) volume and the correlation functions vanish upon 

dividing by the infinite factor Vol(CKG). So 0,1 and 2 point functions vanish 

at tree level. There is no tree level cosmological constant, no tree level 

tadpoles and no tree level mass or wave-function renormalization. 

Let us now turn to the torus. Here the conformal Killing vector V and 

the quadratic differential ¢ are (complex) constants, which we set to one 

for simplicity. We can parametrize the torus by two real variables (1, (~ 

with 0 G (1,(2 G 1, in terms of which the complex coordinates become 

z = (1 + ~_(2 and we can use Weyl invariance to set ds 2 = tdz] 2. The area 

of the t o r u s i s  f x / h d 2 ( =  I m r .  If we change r to r ~ v + & - ,  we find 

_ .  = i We now (up to a rescaling) ds 2 ldz + 6r2-i~mrdf[ 2 and # z  2-I-~-¥" 

easily compute ( ¢ [ ¢ ) =  Imv,  ( # ] ¢ ) =  1 and VoI(CKG)= (V, V) - - ( I m v )  2 

where we have neglected constant factors independent of r .  Consequently, 

the total contribution from the ghost zero modes is ( 1 3 mIGT) " Performing the 

integral over X we get for the one-loop parti t ion function 

Zg=l ""/.~1 (Imd2rr) 2 Iml w (Im ~')+I3(det'[~])-13det'V(z+t)det'V~- 1) (6.52) 

We have dropped a factor of the volume of 26-dimensional space-time and 

other numerical factors. ( I m r )  13 is the contribution from the X ~ zero 
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modes. We will not go into details of how it arises, neither will we com- 

pute the determinants  as we will rederive the partition function using the 

Hamiltonian formalism in light-cone gauge below. So let us simply state 

the results. For the determinants one gets 
/ (+1 )  / z --. det V z det V ( _ I ) =  det'[--] (Im r)2[V(r)[ 4. (6.53) 

rl(r) is the famous Dedekind eta-function defined as 
(x) 

~(r)  = ql/24 r I  (1 - qn), q = e 2~rir . (6.54) 
n----1 

Then the final expression for the one-loop vacuum amplitude is 

Z t = f~_ d2r 
( imr)2 X(e, r)  

with 

~:(~, r) ~ (Imr)-l=lr/(r)[  -4s . (6.55) 
We will often refer to X(T, ~) as the partit ion function. Eq.(6.53) indicates 

that  the effect of the ghosts is to cancel the contribution of two coordi- 

nate degrees of freedom which correspond to the longitudinal and time like 

string excitations. Therefore, the parti t ion function counts only the physical 

transverse string excitations. 

Let us now check modular  invariance of the one loop parti t ion function. 
d 2 r  First note tha t  the measure ~ is invariant by itself. This follows from 

d2r ---, ]cr + d[ -4  d2r ,  
(6.56) 

Im r -+ [cr + d[-2 Im r .  

To check modular  invariance of x( r ,  e) it suffices to do so for the two gener- 

ators S and T of the modular  group. With the well known transformation 

properties of the eta-function 

+ 1) = 
(6.5r) 

= 

modular invariance follows straightforwardly. 

124 



Let us now evaluate the part i t ion function by making use of the connec- 

tion between the Euclidean path  integral and the Hamiltonian formalism. 

Write the torus modular parameter as r = Re r + i Imr .  I m r  plays the 

role of an Euclidean time variable or, in statistical mechanics language, of 

the inverse temperature.  If Re r = 0, we obtain the functional integral as 

Tr e x p ( - I m  r H ) ,  where the time evolution operator in the Im r direction 

is given by H = H L + H R (H  L, H R are the left- and right-moving Hamil- 

tonians respectively). The part i t ion function counts the number of states 

which propagate around the torus in the I m r  direction and weighs them 

with a factor e - I m r H  If one thinks of the torus as a cylinder of length 

Im r whose ends are identified, one can twist the two ends relative to each 

other by an angle 2toRe r before joining them. The operator which gener- 

ates these twists is P = Ha - HL. (Note that  in the picture of Chapter  2, 

Im r corresponds to the world-sheet coordinate r and the twist to a shift in 

or.) The complete one-loop string part i t ion function X(~, r)  is then given by 

X('~, T) ~ Wr e +27tiRe r(HR-HL)e-27rIm r(HL+HR) 

-- Tr  qHLqHR. 
(6.~8) 

We have rescaled I m r  by a factor of 2re. In light-cone gauge only the 

physical states contribute and Hz and HR are (i = 1 , . . . ,  24): 

1 2 oo - i  ~i  _ 1 =  1 2 
H~ = ~p~ + ~ ~ - n  ~ ~p~ + N ~ -  1, 

n--=l 

1 2  oo 1 2  
= ~-n°~n -- ~Pi " H~ ~;~ + Z ~ ~ 1 =  o + N ~ - I  

n = l  

(6.59) 

Inserting HL, HR into eq.(6.58) leads to 4 

4The calculation is completely analogous to the evaluation of the grand partition 
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d24p e-2~rp2Im ~-e4~rImrwr Ct NL qNR ¢) "-' [ j 

,~ 1 e 47rImr c~ qn)-24 
(imr)12 1-I (1 - ~n)-24(1 - (6.60) 

n = l  

1 
- (Im -)121'70")1-48 " 

Eqs.(6.60) and (6.55) agree. Deriving the parti t ion function in this way it 

is evident tha t  X(~, r)  contains the information about  the level density of 

string states, i.e. the number of states of each mass level. Expanding X(~, 7-) 

in powers of q = e 27fir one gets a power series of the form ~ dmn~rnq n. dmn 

is simply the number  of states with rn 2 = m and m 2 = n. The first few 

terms of the expansion are 

x ( 'L  T) ~ 177(r)1-48 1 - iq12 + 24q -1 + 24q -1 + 576 + . . .  (6.61) 

The first term corresponds to the negative (mass) 2 tachyon and the con- 

stant term to the massless string states, namely to the on-shell graviton, 

antisymmetric tensor field and dilaton. Note however that  X(~, ~') contains 

also "unphysical" states that  do not satisfy the reparametrization constraint 

L0 = L0 and tha t  they are not projected out when performing the integral 

over the modular  parameter  in the region of 5 w where Im v < 1. Due to the 

tachyon pole one finds that  the one-loop cosmological constant of the closed 

bosonic string is infinite. 
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function of an ideal Bose gas with energy levels p. Each transverse degree of freedom 

contributes with 
o O  o O  

N (rip} N ("v} P n = l  m=O n 
", =-~ ~ '*v =~" 
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Chapter 7 

The Classical Closed Fermionic String 

Up to now we have only discussed bosonic strings. That means that all 

physical degrees of freedom had been described by bosonic variables. We 

have treated the classical and the quantum theory, the algebra of the con- 

straints (the Virasoro algebra) and we have found that at the quantum level 

the theory makes sense only in the critical dimension which was found to 

be 26. The spectrum of both the open and closed, oriented and unoriented 

theories was found to contain a tachyon, a fact which is at least alarming. 

Let us recall that  its negative (mass) 2 arose from the (regularized) zero 

point energy of an infinite set of bosonic harmonic oscillators. The problem 

with the tachyon may be cured if we introduce fermionic degrees of freedom 

which are quantized with anti-commutators. Then there is a chance that 

the zero point energies cancel and the tachyon is absent. 

One basic symmetry principle that  guarantees the absence of a tachyon 

in the string spectrum is space-time supersymmetry. It is important to keep 

in mind the distinction between world-sheet and space-time supersymmetry. 

The fermionic string theories that  we will discuss all possess world-sheet su- 

persymmetry but not necessarily space-time supersymmetry and are not all 

tachyon-free. Whether a particular string theory is space-time supersym- 

metric or not will manifest itself, for instance, in the spectrum. Especially, 

the existence of one or more massless gravitinos will signal space-time su- 

persymmetry. The formulation of fermionic string theories which we will 

present is the Ramond [1], Neveu, Schwarz [2] spinning string. It has man- 

ifest world-sheet supersymmetry; space-time supersymmetry, if present, is 
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however not manifest. A string spectrum with space-time supersymmetry 

is obtained after a suitable truncation as it was found by Gliozzi, Scherk 

and Olive [3]. We should mention that there exists also the so-called Green- 

Schwarz formalism [4] in which space-time supersymmetry is manifest at 

the cost of manifest world-sheet supersymmetry. It uses in a crucial way 

the triality property of SO(8), the transverse Lorentz group in ten dimen- 

sions, which is, as we will see later in this chapter, the critical dimension for 

the fermionic string. Since we will also be interested in non space-time su- 

persymmetric theories in less than ten space-time dimensions (see Chapter 

14), the old formalism with manifest world-sheet supersymmetry is pre- 

ferred. We will restrict our discussion in this and all the following chapters 

to closed oriented strings. Also, in this chapter we will discuss n = 1 super- 

symmetry on the world-sheet. Extended world-sheet supersymmetries will 

be covered in Chapter 12. 

7.1 S u p e r s t r i n g  a c t i o n  and  i ts  s y m m e t r i e s  

Let us now find the requirements on the field content coming from world- 

sheet supersymmetry and set up the supersymmetric extension of the 

Polyakov action. The bosonic string theory was described by the action 

for a collection of d scalar fields X/~(a, r) coupled to gravity haz in two 

dimensions. The purely gravitational part of the action was trivial, being a 

total derivative. This left us with 

1 / d2o.x/-~ha~hc%,Xl~oq/~Xl~ (7.1) 
& = -8-7 

which is just the covariant kinetic energy for the "matter fields" X/~. The 

supersymmetric extension of & should be the coupling of supersymmet- 

ric "matter" to two-dimensional supergravity. With respect to the d- 

dimensional target space, which can be considered as an internal space 

from the world-sheet point of view, the fields X~(a, r) transform as a vec- 

tor. Hence, their supersymmetric partners should be world-sheet spinors 
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with a target space vector index. We will denote them by ¢g(cr, r) .  Let us 

now see how the balance between bosonic and fermionic degrees of freedom 

works out. The fields Xg, representing d real scalars, provide d bosonic 

degrees of freedom. If we impose on the d world-sheet fermions Cg a Majo- 

rana condition, they provide 2d fermionic degrees of freedom. We have to 

introduce d real auxihary scalar fields F~. Together (Xg, ¢~, F ~) form an 

off-shell scalar multiplet  of two-dimensional n = 1 supersymmetry. On-shell 

su ce. 

Let us now turn  to the gravity sector. The supergravity multiplet  con- 

sists of the zweibein ea a (n-bein in n dimensions) and the gravitino Xa. 

The zweibein has two different kinds of indices, a is a Lorentz index and 

takes part  in local Lorentz transformations whereas a is called an Einstein 

index and takes part  in coordinate transformations (reparametrizations). 

Einstein indices are raised and lowered with the world-sheet metric hag 

and Lorentz indices with the Lorentz metric ?'lab. The zweibein allows to 

transform Lorentz into Einstein indices and vice versa. The introduction of 

the zweibein is necessary if we want to describe spinors on a curved manifold 

since the group GL(n,  R) does not have spinor representations 1 whereas the 

tangent space group, SO(d - 1, 1), does. The inverse of eC'a, denoted by 

ec~ a, is defined by 

e °e% =65 (7.2) 

eC~a defines an or thonormal  set of basis vectors at each point,  i.e. it satisfies 

eCtae~ bh afl -- rla b (7.3) 

from which we derive 

e '~ae~ brl ab = h c~#. (7.4) 

The gravitino is a world-sheet vector and a world-sheet Majorana spinor. 

1 Under general coordinate transformations, tensor indices are acted on with elements 

of GL(n, R). 
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In d dimensions the d-bein ea a has d 2 components. There are n 

reparametrizations and ½d(d - 1) local Lorentz transformations as gauge 

symmetries, leaving l d ( d -  1) degrees of freedom. The gravitino, being a 
I d Majorana spinor-vector has 2 2]d components where [~] denotes the integer 

part of ~. For n = 1 supersymmetry there are 2[~] supersymmetry parame- 

ters leaving ( d -  1)2[~] degrees of freedom. For the case of interest, namely 

d = 2, we find one bosonic and two fermionic degrees of freedom. To get a 

complete off-shell supergravity multiplet we have to introduce one auxiliary 

real scalar field A. The complete off-shell supergravity multiplet is then 

(ea a, Xo,, A). (eo~ a, Xa) form the on-shell supergravity multiplet. 

So far the discussion was independent of any particular action and only 

a statement of the field content of the two-dimensional supersymmetry mul- 

tiplets. Let us now complete the string action. The kinetic energy term for 

the gravitino vanishes identically in two dimensions. 2 The kinetic energy 

for the matter  fermions ¢/~ and the contribution of the auxiliary fields F v 

is 
1 

= 4-; ] + F.F } (7.5) 
where e = [dete~al = v/-h. Our notation is summarized in the appendix 

to this chapter. The fact that the derivative in $2 is an ordinary derivative 

rather than a covariant derivative containing the spin connection is a con- 

sequence of the Majorana spin-flip property eq.(B.3). The action $1 + $2 is 

not yet locally supersymmetric. It is simply the covariantized form of the 

action of a scalar multiplet. Local supersymmetry requires the additional 

term 
i 

= ~ ¢ , ) .  (7.6) 

The auxiliary field A does not appear. The auxiliary matter  scalars F/~ can 

2In any number of dimensions it is given by ~aFa~'rD~x-r where F afi't is the anti- 

symmetrized product of three Dirac matrices which vanishes in two dimensions. 
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be ehminated via their equations of motion. This will be assumed to be 

done from now on. The complete action 

1 / d2crv/-£{haflc3aXtLc313X" + 2i~tLpac3aCt L S = -8 - -~  

i 
- i2apflPa¢"(Ol3X. - ~2fl¢,)} 

(7.7) 

is invariant under the following local symmetries: 

(i) supersymmetry 

5eX ~ = ig¢ it, 

G¢~ = lp~(O~Xt'  
i 

- 

i _  a 
6eea a = ~ep  Xa,  

5eXa = 2Dae, 

(7.8) 

where e((r, r) is a Majorana spinor which parametrizes supersymmetry 

transformations and Do, a covariant derivative with torsion: 

1 
Dac = Oae - "~Wc,~e, 

i 
wa = -!e%~ab2 = ~ ( e ) +  ~ a J X ~ ,  (7.9) 

, ~ ( e )  = - 1 -e ,~ ,~d~O~e¢.  
e 

wc,(e) is the spin connection without torsion. 

(ii) Weyl transformations 

6A x ~  = O, 

5ACt' = _1ACt,  

~Aea a --- A e a  a ,  

1 
5AXa = -~Axa. 
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(iii) super-Wey] transformations 

6~Xa = parl, 

6~/(others) = O. 

with U(~, 7-) being a Majorana spinor parameter.  

(iv) two-dimensional Lorentz transformations 

6 t X ~  = O, 

~t¢~ = ~0¢ ~ , 

61ea a : leabea b , 

1 l - 6tX~ = -~ PX.a. 

(v) reparametrizations 

(7.11) 

(7.12) 

6( eaa _ ~O/3eaa  + e/ acga~/3 ' (7.13) 

~x~ = ~zozx~ + x zo~z .  

If we combine reparametrizations with a Lorentz transformation with 

parameter  l = -~awa(e ) ,  they can be written in covariant form 

1 h . , e~o~e~ ° = Vo 0 = ~(P~)~- ~(~V~)+ ~ ~V 

6(X~ = (~V~X~ + X~Va( ~ , 

(7.14) 
where V a  is a covariant derivative without torsion and the operator 

P has been defined in Chapter  2. 

In eqs.(7.10)-(7.14) A, l and ~ are infinitesimal functions of (or, r) .  

There are several ways to get the complete action and the symmetry  

transformation rules. One possibility is to use the Noether method; another 
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is to go to superspace. Either way, the procedure is analogous to the four 

dimensional case. 

7.2 S u p e r c o n f o r m a l  gauge  

We can now use local supersymmetry, reparametrizations and Lorentz trans- 

formations to gauge away two degrees of freedom of the zweibein and of the 

gravitino each. To do this we decompose the gravitino as 

1 1 = ( h J  - -ip,J)x  + - i p , J x z  

i 

-- X.a + pa A 

1 where ; ~  = ~P~P~X~ is p-traceless, i . e . p .  ~ = 0 and A = ½PaXa. This 

corresponds to a decomposition of the spin 3//2 gravitino into helicity +3//2 

and helicity 4-1/2 components. It is orthogonal with respect to the inner 

product (¢1¢) = J d2cr¢~¢a • We can make the same decomposition for the 

supersymmetry transformation of the gravitino 

6~X~ = 2 D ~  
(7.16) 

- -  2(/zE)  + DZE 

where we have defined the operator 

1 1 
(IIe)o~ = (ha 13 - "~pap/3)D~E = ~J3 paDl3e (7.17) 

which maps spin 1/2 fields to p-traceless spin 3/2 fields. We can now write, 

at least locally, Xa = P/3PaDz~ for some spinor ~ where we have used the 

identity eq.(B.5). Comparing this with eq.(7.16) we see that ~ can be elim- 

inated by a supersymmetry transformation. We then use reparametriza- 

tions and local Lorentz transformations to transform the zweibein into 

the form e a  a = e ¢ 6  a which we have demonstrated in Chapter 2 to be 

always possible locally. These transformations do not reintroduce trace 
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parts into the gravitino since under reparametrizations it transforms as 
O~z _ pa(cr)A(cr) --~ t3a(cr)A(cr) = ( ~O-ja-)p~(~r)A(5 ). In this way we arrive at the 

so-called superconformal gauge [5, 6, 7] which is a generalization of the con- 

formal gauge to the supersymmetric case: 

e a "  = , Xa  = PaA.  ( 7 . 1 8 )  

In the classical theory we can still use a Weyl rescaling and super-Weyl 

transformation to gauge away the remaining metric and gravitino degrees 

of freedom ¢ and A, leaving only e a  a - -  5a and Xa = 0. In analogy to the 

bosonic case, these symmetries will be broken in the quantum theory except 

in the critical dimension. 

Above arguments that  were used to go to superconformal gauge were 

only true locally and one has to check under what conditions superconformal 

gauge can be reached globally. From our foregoing discussion it is clear that  

the condition is tha t  there exists a globally defined spinor e and a vector 

field ~a such tha t  

(//e)a = ra and (P()ad = tad (7.19) 

for arbitrary va which satisfies p .  r = 0 and arbitrary symmetric traceless 

tensor tad. 

In Chapter  2 we have seen tha t  the second condition is equivalent to the 

absence of zero modes of the operator Pf .  In the same way we can show 

that  the absence of zero modes of the o p e r a t o r / / t ,  the adjoint o f / / ,  allows 

to gauge away the trace part  of the gravitino. / / f  maps p-traceless spin 3/2 
fields to spin 1/2 fields via 

( / / t r )  = -2Data. (7.20) 

The zero modes of p t  were called moduli. In analogy we call the zero modes 

of/7* supermoduli. We thus have 
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of moduli = dim ker p t ,  

# of supermoduli = dim ker Lrt.  (7.21) 

Also, zero modes of the operators P and H mean tha t  the gauge fixing is 

not complete. The zero modes of P are the conformal Killing vectors (CKV) 

(cf. Chapter  2); the zero modes of H will be referred to as conformal Kilting 

spinors (CKS); i.e. 

of CKV = dim ker P, 
(7.22) 

of CKS = dim ker Lr. 

We will compute the dimensions of the kernels o f / 7  a n d / T t  in Chapter  9. 

P and p t  have been treated in Chapter  6. 

In superconformal gauge the action simplifies to 

1 
s -  f + (7.23) 

which is nothing than the action of a free scalar superfield in two dimensions. 

To arrive at eq.(7.23) we have rescaled the mat ter  fermions by e¢/2¢ ~ ¢. 

World-sheet indices are now raised with the flat metric r/a/3 and pa = ~aapa" 
Also, the torsion piece in the spin connection now vanishes due to the iden- 

tity eq.(B.5) and we have wa = ea~30~¢. The action is still invariant under 

those local reparametrizations and supersymmetry transformations which 

satisfy p~a = 0 and /Te  = 0. Under the supersymmetry transformations 

the fields t ransform as 
= 

1 a (7.24) 
= 

These equations follow from the transformation rules eq.(7.8). To see this 

we note that  the zweibein is not taken out of superconformal gauge if a su- 

persymmetry  t ransformation with parameter  e is accompanied by a Lorentz 

transformation with parameter  l = ~gtSA. The Weyl degree of freedom 

¢ then changes according to 5¢ = ~g)~. Likewise, the gravitino stays in 

the gauge eq.(7.18) if the supersymmetry parameter  satisfies yOpaD~e = 0 
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which is the condition (He) = 0 found above. I f  we now redefine e¢/2¢ -- 

and e-¢/2e -- ~ we find, after dropping tildes, eqs.(7.24). It is also easy 

to show tha t  the condition p3paD3e  = 0 reduces in superconformal gauge 

to p~3paOz~ = 0. It is of course also straightforward to verify directly that  

the action eq.(7.23) is invariant under the transformations (7.24) with e 

satisfying pS pac3/~e = O. 

The equations of motion derived from the action eq.(7.23) are 

OaO'~X ~ = O, 

p C~ O,~ ¢~ = O. 
(7.25) 

As in the bosonic theory they have to be supplemented by boundary con- 

ditions. For the bosonic coordinates X~ they are as given in eq.(2.37). For 

the fermionic fields ¢# we make variations such that  5¢(v0) = 5¢(vl) = 0. 

This leads to the condition that  5~p1¢ is periodic. 

For theories with fermions the energy momentum tensor is defined as 

21r 8S 
Ta3 = -  " 3 "eaa. (7.26) 

e ~ e  a 

We can analogously define the supercurrent as the response to variations 

of the gravitino; we will denote it by TF, indicating that  it is a fermionic 

object related to the energy-momentum tensor T by supersymmetry. This 

means that  5S = 1 f d2ae i52aTFa with 

2~r 5S 
TF,  - . ( 7 . 2 7 )  

e iS~ a 

The equations of motion for the metric and gravitino are 

T , Z  = 0 , = 0. (7.28) 

They are constraints on the system and generate symmetries, analogous to 

the bosonic case. We will have much to say about this below. After going 

to superconformal gauge we find 
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TaB = 2 aaXt~ aBXt~ - lc3~' Xt~avXtd7c~B, 
i 

¼¢"p~Oo~¢, O, (7.29) + - ~ ¢ ~ ; ~ a B ¢ ,  + _ = 

T ~  = 4 S ; ~ ¢ ' a B x .  = O. 

Here we have used the equations of motion for ¢~ to cast TaB into its 

symmetric form. Tracelessness follows also upon using the equations of 

motion. Note that 

p~TF~ = 0 (7.30) 

which is the analogue of T aa -- 0. It is a consequence of super-Weyl 

invariance. Again, with the help of the equations of motion it is easy to 

show that the energy-momentum tensor and the supercurrent are conserved: 

a~TaB = 0, (7.31) 

OaTFa = O. 

These conservation laws lead, as in the bosonic theory, to an infinite number 

of conserved charges. This is most easily analyzed in light-cone coordinates 

on the world-sheet. In terms of these, eqs.(7.23) and (7.25) become: 

1 / d 2 o . { a + X . a _ X + i ( ¢ + . O _ ¢ + + ¢  .a+¢_) } (7.32) S=2-- ~ 
and 

a+a_x/~ = o, (7.33) 
a_¢+ ~ =a+¢_ ~ =o. 

The conditions on the allowed reparametrizations and supersymrnetry trans- 

formations take the simple form 

a+~- - -  0_~ + - - - -  0, (7.34) 
O+E-  = & E  + = 0.  

()  We have defined CA = ¢+ and e A = following the conventions 

of the appendix. Note that for spinors ± denote their spinor components 
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whereas for vectors they denote vector components in conformal coordi- 

nates. 

As already mentioned above, the equations of motion have to be supple- 

mented by a periodicity condition which now reads (¢+~¢+ - ¢_~¢_)(or) = 

(¢+6¢+ - ¢_6¢_)(cr + 27r). Its solutions are: 

¢+(~) = +¢+(~  + 2~) 
(7.35) 

¢_(~) = +¢_(~ + 2~) 

with the same conditions on ~¢j=. Anti-periodicity of ¢4- is possible as 

they are fermions on the world-sheet. Periodic boundary conditions in cr 

are referred to as Ramond (R) boundary conditions whereas anti-periodic 

boundary conditions are called Neveu-Schwarz (NS) boundary conditions. 

This means that all quantities which are fermions on the world-sheet sat- 

isfy ¢(~ + 27r) = e2~ri¢¢(cr), where ¢ = 0 for the R-sector and ¢ = ½ 

for the NS-sector. The conditions for the two spinor components ¢+ and 

¢_ can be chosen independently, leading to a total of four possibilities: 

(R,R), (NS,NS), (NS,R) and (R,NS). Obviously, the two components of the 

supersyrnmetry parameter have to be chosen such that 6X~ = ig¢~ is pe- 

riodic. We will show in the next chapter that string states in the R sector 

are space-time fermions and states in the NS sector are space-time bosons. 

Therefore, the two sectors (R,R) and (NS,NS) lead to space-time bosons 

and the remaining sectors, (NS,R) and (R,NS) to space-time fermions. 

The energy-momentum tensor becomes 

1 i 
T++ = -~O+X . O+X + ~¢+. 0+¢+ 

i (7.36) T__ = ~O_X . O_X + -~¢_ . 0_¢_  

T+_ = T _ +  = 0 

with 
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a_E++ = cg+T__ = 0 .  (7.37) 

Due to eq.(7.30), two of the four components of TF~ vanish identically. 

The only non-vanishing components are TF+ + = TF+ and TF__ = T F_ 

where ++ denotes the upper spinor component of the cr + vector component. 

Eq.(7.29) gives 

with 

1 
TF+ = [ ¢ +  • O+X 

1 
T F_ : -~¢_ .c3_Z 

(7.38) 

a_TF+ = a+T _ = 0 .  

From the equations of motion we learn that X t' can again be split into 

left- and right-movers and that ¢~ = ¢~+(cr +) and ¢~_ = ¢~_(c~-). The 

conservation laws tell us that T++ and TF+ are functions of o "+ only whereas 

T__ and T F_ only depend on or-. 

We have discussed in Chapter 2 how energy-momentum conservation 

results in an infinite number of conserved charges which generate the trans- 

formations cr ± ~ or±+ f(cr ±) under which the action is invariant after going 

to conformal gauge. These are precisely the transformations which do not 

lead out of conformal gauge. This carries over to the fermionic string. But 

now in addition we have the conserved supercharges f dcre+(cr+)TF+(a+ ) 

which reflects the fact that the action and the superconformal gauge con- 

dition are invariant under supersymmetry transformations with parameters 

satisfying the second of eq.(7.34). 

Next, let us find the algebra of T and TF, which is the supersymmetric 

extension of the Mgebra eq.(2.70). To do this we need the basic Poisson 

brackets 3 

3For anticommuting variables they are defined as 
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{¢~A(~, ' r ) , I I~(Cr ' ,  T)}p.B. = --6AB6(o" -- O't)q tL~'. (7.39) 

The bracket of ~# with itself vanishes. For the momentum canonically con- 

jugate to ¢~ we find 
i t~ 

/ /~  = --¥~¢A" (7.40) 

If, however, we use this definition o f / - / in  eq.(7.39), we find a contradiction. 

Let us explain the way out of this. We notice that  eq.(7.40) constitutes a 

(primary) constraint. We define 

i t~ 
¢~ = H~ + ~ ¢ A  (7.4 0 

and find 
i 

{¢~A(Cr, 7-), ¢~ (or', T)}p.B. = 2~r6(Cr--O")6ABTlt~'. (7.42) 

In contrast to the constraints we have encountered so far (primary and 

secondary), the Poisson bracket of this constraint with itself does not vanish 

on the constrained hypersurface of phase space. Constraints of this kind are 

called second class constraints; the constraints we have encountered so far 

have all been first class. If second class constraints are presents, Poisson 

brackets have to be replaced by Dirac brackets. If ¢i are a complete set of 

second class constraints, we define {¢i, Cj}P.B. = Cij .  The Dirac bracket is 

defined as 

{ A , B } ~ . B .  = { A , B } p : B . -  { A , ¢ i } p . B C ~ I { ¢ j , B } p . B .  . (7.43) 

This leads to 

{¢~+(cr, v), ¢~_ (or', v)}D.B. = --2~ri6(o" -- o")71t% 
(7.44) 

{¢~(~, ~), ¢"_ (W, ~)}~.B. = - 2 ~ i ~ ( ~  - ~')~". 

{A,B}p.B. = -(-I) ~A~B { OA OB OB OA 
o ~  o-~ + (_~),A,,, o~ o r  } 

where  eA = 1 if A is a c o m m u t i n g  express ion and e = 0 if it is an t i commut ing .  The  

canonical  m o m e n t u m  is defined as zrg = O~ . 
O,k~' 
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Using this and the basic brackets for X/~(tr, t) we find 

{T++(o'),T++(o")}D.B. = - { 2 T . + ( J ) 0 '  + 0 'T++(J)}  27rS(cr - J ) ,  

"3 T , I {T++(o-),TF+(o-')}D.S. = - ~ [  F+(O-)c9 + O~TF+(O-')} 2r5(o- - o"), 

i {TF+(O),TF+(O-')}D.S. = - [ T + + ( J )  2~r5(~ - J ) .  

(7.45) 

It is also easily verified that 

1 /~ r {TF+(a),Xt'(or)}D.s. = - ~ ¢ + ( ~  ) 2~r5(~ - J ) ,  

(7.46) 

{TF+((7), ¢~(J)}D.B. = -- 2c9+Xtt(J) 27r6(cr -- J ) ,  

which is just the supersymmetry algebra. Under the transformations gen- 

erated by T++, ¢ transforms as 

{T++(a), ¢+((/)}o.B. = - {  l ¢ + ( J ) 0 '  + 0 ' ¢ + ( J ) }  27r5(~ - J ) .  (7.47) 

This last equation tells us that the world-sheet fermions transform under 

conformal transformations with weight ½. 

We now proceed as in the bosouic string case and solve the equations of 

motion for the unconstrained system. The treatment for the bosonic coordi- 

nates is identical to the one in Chapter 2 and will not be repeated here. The 

fermionic fields require some care. We have to distinguishing between two 

choices of boundary conditions. The general solution of the two-dimensional 

Dirac equation for the cases of periodic (R) and antiperiodic (NS) boundary 

conditions is 

, e z+~  [ ¢ = 0 (R) 
where 

i (7.48) 
(Ns) ¢~(~,,) = Z b~ e- i ' ( ' -~)  ¢ = 

rEZ+¢ 

and the reality of the Majorana spinors translates into the following condi- 

tions for the modes: 
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( ~ ) t  = b, , ( ~ ) t  = ~ ,  . (7.49) 

In terms of the fermionic oscillator modes the basic Dirac bracket eq.(7.44) 

translates to 
V {be, b, }0.8. = -i,7"~5,+,, 

(~,-~ be }O.B. = --i~#u6r+,, (7.50) 

{b,, b,}z).s. =0 .  

Next we decompose the generators of conformal and superconformal 

transformations into modes. In the following we will restrict ourselves to 

one sector, say the right-moving one. The expressions for the left-moving 

sector are then obtained by merely putting bars over all modes. We define 

1 fO 2~r Lm - 2re d~ e-irncrT__, 

(7.51) 

Gr = _1 --/27rd~ e - i r ~ T F _ .  
7r JO 

From eq.(7.38) it is clear that TF_ satisfies the same boundary condition as 

the ¢#: periodic in the R-sector and antiperiodic in the NS-sector. Conse- 

quently, the modings are integer and half-integer respectively. In terms of 

oscillators we find n m =  n ~  ) + n(bm ) where 

L(~)_  1 (as before), 
n~Z 

L ~ ) -  12 Z(r + ~)b_, .  bin+,, (7.52) 

Gr - Z a - n  • br+n. 
r 

Note that ~ r  b-r • bm+r = 0. This term has been included to make the 

expression for L(m b) look more symmetric. It corresponds to the mode ex- 

pansion of 0_(¢_¢_) which vanishes by the Grassmann property of ¢_. 

The generators Lm and Gr satisfy the following hermiticity conditions 

L~ = L_= , c~ = c_ , .  (7.53) 
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One now verifies, using the basic brackets eqs.(2.74) and (7.50), the following 

(classical) algebra: 

{Lm, nn}D.B.=-i(m-n)nm+n, 

{Lm, Gr}o.s. = _ i (1  -~m- r)Gm+~,, (7.54) 

{Gr,  G, }o.B. = -2iL~.+s. 

It can also be derived from eq.(7.45) and the definitions eq.(7.51). This al- 

gebra is called the super-Virasoro algebra. In the next chapter we will show 

how it is modified in the quantum theory. This concludes our discussion of 

the classical fermionic string theory. 

A p p e n d i x  B. Spinor a lgebra in two dimensions 

In this appendix we summarize our notation for spinors in two dimen- 

sions and provide some identities which will prove useful in this and the 

following chapter. The two-dimensional Dirac matrices satisfy 

Y }  = 2ho . (B.1) 

They transform under coordinate transformations and are related to the 

constant Dirac matrices through the zweibein: pa _. eaapa from which 

pb} __. 2~ab with ~Tab__ .(-10 +10) follows. A convenient basis for the {po, 

pa is 

p0= (--1 
and we define p = pOp1 = (01 -10) which is the analogue of 7 5 in four 

dimensions. We define the charge conjugation matrix as C = p0. Then 

(pa)W __ _CpaC-1. A Majorana spinor satisfies ~ = ),tp0 = ATc. This 

means that Majorana spinors are real. An expression of the form AF¢, 
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where F is some combination of Dirac matrices, can be, using spinor indices, 

alternatively written as A A F A B C B ,  where A A = A B e  B A  with C A B  = e A B  = 

( 0 10)" Tw°-dimensi°nal spin°r indices take values A = +; i'e" ¢+ = - 1  

- ¢ _ ,  ¢ -  = ¢+. The index structure of the Dirac matrices is ( p c ~ ) A B .  It is 

now easy to prove the following spin-flip property, valid for anti-commuting 

Majorana spinors: 

~ l p a l  . . . p a , , A 2  = ( _ l ) n ~ 2 p a , ,  . . . pal A~. (B.3) 

This and the following Fierz identity, again valid for anticommuting spinors, 

are needed to show the invariance of the action under supersymmetry trans- 

formations: 

= (+x ) ( (b : , l  + + (B.41 

The identity 

/ p ~ p a  = 0  (B.5) 

follows trivially from the Dirac algebra in two dimensions. Another useful 

relation is 
l a  
e 

Let )~a, ¢ denote a spin 3/2 fermion which satisfies p. ~ = 0; one can show 

that 
p#~ = 0 

e 

These identities will be of use in the following chapter. 

(B.7) 
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Chapter 8 

The Quantized Closed Fermionic String 

In analogy to the bosonic string, consistent quantization of the fermionic 

(spinning) string implies the existence of a critical dimension (d = 10). 

The proof of the no-ghost theorem and the determination of d = 10 first 

appeared in the work of Schwarz [1], Goddaxd and Thorn [2] and Brower 

and Friedman [3]. The path integral quantization of the fermionic string 

was initiated by Polyakov [4]. 

8.1 C a n o n i c a l  q u a n t i z a t i o n  

We proceed in the same way as in the bosonic theory by making the re- 

placement (3.1) and, in addition, by replacing the Dirac bracket for the 

anticommuting world-sheet fermions by an anticommutator: 

{, }~.B.-. ~:{, }. (s.1) 

We then get 
{¢+'(~,~),  ~ , ¢ + ( ~ ,  ~)} = 2 ~ , . ~ ( ~  _ J ) ,  

{¢_~(~, T),¢~'(J,~-)}  = 2 ~ , ~ ' ~ ( ~  - ~') ,  

{¢~+(~, ~-), ¢~ ( J ,  T)} = o,  

or, in terms of oscillators 1 

(s.2) 

1 Again, we will only write down the expressions for the right-moving sector of the 

closed string. The left-moving expressions are easily obtained by simply putting bars 

over all mode operators. 
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{b~,b~} = r / " U S r + , .  (8.3) 

It is again easy to see that  oscillators with positive mode numbers are an- 

nihilation operators whereas oscillators with negative mode numbers are 

creation operators. We have seen in Chapter  3 that  c~0 ~ and ~0 ~ correspond 

to the center of mass momentum of the string. We will see below how the 

zero-mode operators b0 ~ and b0 ~ in the R-sector are to be interpreted. But we 

note already here tha t  they satisfy, with suitable normalization, a Clifford 

algebra: 

The level number  operator is 

where 

{bo~, b~} = 7/"~' . (8.4) 

N = N (°') + N (b) (8.5) 

(3O 

N(") = ~ ~ - m "  ~m, 
m = l  

o0 (8.6) 
N (b) = ~ r b - r  • br. 

fEZ+a>0 

The oscillator expressions of the super-Virasoro generators are again 

undefined without  giving an operator ordering prescription. As in Chapter  

3 we define them by their normal ordered expressions, i.e. 

Lm = L~)  + L~) (8.7) 

with 

L(ma) _ 1 - ~ ~ : ~ - ~  . ~ m + ~  : 
nEZ 

L(m b) 1 m =~ 52 (,.+-f):b_,..bm+,.. (8.8) 
rEZ+a 

and 

c,. = Z ~ - , ,  " ~ , . + , , .  (8.9) 
nEZ 
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Obviously, normal ordering is only required for L0 and we include again an 

as yet undetermined normal ordering constant a in all formulas containing 

L0. 

The algebra satisfied by the Lm and Gr can now be determined. Great 

care is again required due to normal ordering. One obtains 

d 2 
[Lm, Ln] : ( m -  n)Lm+n + ~rn(m - 2a)Sm+n, 

"~ - ~ ) c m + ~ ,  (8 .1o)  [Lm, Cr] = ( '~ 

{ O r , G , }  = 2Lr+s + 2 ( r  2 
a 

- ~1~+,. 
This is the super-Virasoro algebra. A straightforward and save way to derive 

it is to use superconformal field theory. This will be presented in Chapter  

12. We note that  the R (a = 0) and NS (a - ½) algebras agree formally 

except for the linear terms in the anomalies. As we have already remarked 

in Chapter  3, these can be changed by shifting L0 by a constant (with a 

compensating change in the normal ordering constant). Indeed, if we define 

L0 R ---* L0 R + lfi6, it takes the form eq.(8.10) with a -- ½ in both sectors. 

The algebra in the form of eq.(7.45) is modified by quantum effects as 

follows: 
izrd 3 

[T++(cr),T++(~r')] : 4 (9~,5(cr - J )  
(s.ll) 

zrd 2 
{ ~ F ÷ ( ~ ) , T ~ + ( J ) }  = - 4 0 ~ , 6 ( ~  - J )  

where we have only written the quantum corrections. Let us now examine 

the states of the theory. In doing so we have to distinguish between two 

sectors, the R and the NS sectors. The oscillator ground state in both 

sectors is defined by 

~AIO)  = b; Io)  = o m , ,  > o (8 .12)  

(we suppress the dependence on the center of mass momentum). In the 

R sector we still have the bo ~ zero modes. They do not change the mass 
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of a given state, in particular the ground state. The mass operators for 

the fermionic string are given by the same expressions as in the bosonic 

case but with the level numbers as in eq.(8.5). It is then easy to check that  

[b0 ~, m 2] = 0, i.e. the states [0> and b0~[0> are degenerate in mass. But a ~n, b~ 

for n, r < 0 increase aim 2 by 2n and 2r units respectively. This means that  

in the NS sector there is a unique ground state which must therefore be 

spin zero. In the R sector the ground state is degenerate. Since the b0 ~ 

are the generators of a Clifford algebra (c.f. eq.(8.4)) we conclude tha t  the 

R ground state is a spinor of SO(d- 1, 1). This is why states in the R 

sector are space-time fermions whereas states in the NS sector are space- 

time bosons. The oscillators, all being space-time vectors, cannot change 

bosons into fermions or vice versa. Whether  a state belongs to the R or the 

NS sector depends on the ground state it is built on. We will come back to 

this impor tant  point in Chapter 12. We will write the R ground state as 

[a) where a is a SO(d- 1,1) spinor index; then ~ [a )  = -~2(F~)ab[b> where 

/ ~  is a Dirac matr ix  in d dimensions, satisfying {F~, F v} = 27//~v. 

We now have to implement the constraints on the states of the theory. 

Due to the anomalies in the super-Virasoro algebra it is again impossible to 

impose Lm[phys> = Gr[phys) = 0 for all m and r. The most we can do is 

to demand tha t  

Gr ]phys> = 0 r > 0 

Lmlphys) = 0 m > 0 (NS) (8.13a) 

(Lo - a)lphys> = 0 

in the NS sector, and 

Gr [phys> = 0 r > 0 

Lmlphys> = 0 m > 0 (R) (8.13b) 

L01phys) = 0 
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in the R sector. Note that  we do not have included a normal  order- 

ing constant  in the last equation. There are several reasons for this. 

From the super-Virasoro algebra we find that  G0 2 - L0, i.e. if we have 

(L0 - /~2)lphys)  = 0 we also need (Go - #)[phys) = 0. However, Go has 

no normal  ordering ambiguity and the normal ordering constants arising 

from the bosonic and the fermionic oscillators cancel in L0 in the Ramond 

sector. Also, Go is anti-commuting whereas the normal ordering constant 

is a commuting c-number. When we discuss the spectrum we will find that  

setting/z = 0 is indeed correct. There is of course a second set of conditions 

for the left movers and we also have to demand that  

(L0 - L0)[phys) = 0 (8.14) 

which again expresses the fact that  no point on a closed string is distinct. 

So far the quantization has been canonical and covariant. We know, 

however, tha t  due to the negative eigenvalue of r//~' there are negative norm 

states (ghosts). As in the bosonic theory one can prove a no-ghost theorem 

which states tha t  the negative norm states decouple in the critical dimension 

d for a part icular value of the normal ordering constant a. It turns out that  

for the fermionic string d = 10 and a = 1/2. As it was the conformal 

symmetry in the bosonic case, in the fermionic theory the superconformal 

symmetry is just  big enough to allow for the ghost decoupling. We will not 

prove the no-ghost theorem here but  instead follow our t reatment  of the 

bosonic theory and discuss the non-covariant light-cone quantization which 

provides a solution of the constraints. At the end of this chapter we will 

discuss the covariant path  integral quantization. Both approaches will also 

lead to the above values for the critical dimension and the normal ordering 

constant. 
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8.2 Light  cone  q u a n t i z a t i o n  

In the bosonic theory the light cone gauge was obtained by the choice 

X + = c~tp+T (8.15) 

(cf. eq.(3.25)) which fixed the gauge completely. This choice is again possi- 

ble in the fermionic theory and also completely eliminates the reparametriza- 

tion invariance. But now we still have local supersymmetry transformations. 

In going to super-conformal gauge we have fixed it partially leaving only 

transformations satisfying 0+e- = 0_e + = 0. This freedom can now be 

used to transform ¢+ away; i.e. in addition to eq.(8.15) the light-cone 

gauge condition in the fermionic theory is 

¢+ = 0  (8.16) 

or, equivalently, b + = 0, Vr. (Here and below the superscript denotes the 

1 (¢0 Cd-1 ) light-cone component; i.e. "¢± = ~ 4- . Now there is no gauge 

freedom left and we can solve the constraints. Eq.(3.26) is replaced by 

(c~' = 2) 

and 

i i c)+X- - 1 [(O±Xi)2 + i¢±0±¢±] 
2p + 

(8.17) 

1 
"¢_]: = -~+ ~ ~ c3 + X i (8.18) 

which leaves only the transverse components X i and ¢i as independent 

degrees of freedom. In terms of oscillators we get 

,~  ~ ~ - r ) .  ~ "-2a~m} (8.19) - . ~ m - ~ :  + Z ( - ~  .b,.bm_,. 
2P + r 

and 
1 

= - -  (Xr_qb q. b; ;÷ Z ~ ~ (8.20) 
q 

These expressions are valid for the right-moving part of the closed string 

and have to be supplemented by the corresponding expressions for the left- 

moving part. We have included a normal ordering constant which will not 
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be the same for the two sectors (NS and R). The arguments given above 

suggests tha t  it vanishes in the R sector. We will verify this shortly. The 

mass operator is now 

m 2 =  m 2 + m 2 (8.21) 

with 

c~'m2R = 2{ ~ c~i_nc~i n + ~ rbi_rbi r - a }  
n > 0  r > 0  

with a similar expression for m 2. Condition (8.14) translates to 

m 2 = m 2 

for physical states. 

The fight cone action is simply 

(8.22) 

(8.23) 

s~.~- = ± f d:,,((X~? - ( x " ?  - 2~V~p'~O,~¢) (8.24) 
87r 

and the Hamil tonian is 

H = L0 - Lo - 2a 

(8.25) / i o~i - i  - i  i i - i  - i  _ (¢)2  + E t ~ - ~  ~ + ~ - ~ )  + E + r(b_rb r 2a. -- b_rbr) - 
n>0 r>0 

Let us now look at the spectrum of the fermionic string where we have 

to distinguish between Ramond and Neveu-Schwarz sectors. Let us first 

discuss the right-moving part  of the closed fermionic string spectrum. This 

is in fact, up to a mass rescafing by a factor of two, identical to the spectrum 

of the open fermionic string. 

(i) NS-sector: The ground state is the oscillator vacuum 10) with 

atrn2 - a .  The first excited state is b i 1/2[0) with (~trn2 - 1 - "  _ - -  ~ - - a .  

This is a vector of SO(d  - 2) and, following the argument of Chapter  3, 

must be massless, leading to a value a = 1 for the normal ordering con- 

stant. In the fermionic theory the normal ordering constant is formally 

1 5 3  



Table 8.1 Open fermionic string spectrum 

cd(mass)= states and their little (-1) F representation contents with 

SO(8) representation contents group respect to the little group 

+I 

+1 

NS-sector 

I0) SO(9) -1 (1) 
(I) 

vl/=10) s0(8) +1 (8), 

~110 ) b_,/:b_~/~,o," ~ J~ SO(0) -z  (36) 
(s)~ (28) 

bL,/:bL,l:b~z/:lO) 

( i )+(28)  + (38)~ (8)~ 

R-sector 

+1 

so(9) (84)+(44) 

(8)c+(56)~ 

(8), + (58 ) ,  

+1 

I~) +1 (8), 
(8), 

so(8) 
Ja> - 1  (s)~ 

(8)o 

(8), + (56), 

b~_t la) 
(s), + (ss)c 

s0(9) 
+z (128) 

- 1  (128) 
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a = - - 4 ~ ( E ~ =  0 n -  E~=l/2 r) which, using ~-function regularization gives 
d-2[  1 1 ) a - -  -2 ~i~ + 2~ = ~ from which we derive the value d = 10 for the 

critical dimension. 2 At the next excitation level we have the states ai~ 10 / 
• * 

and b~l/2b:_1/210) with aim2 1 = ~, comprising 8 + 28 bosonic states. It can 

again be shown that  these and all other massive fight-cone states, which are 

tensors of SO(8) ,  combine uniquely to tensors of SO(9),  the little group for 

massive states in ten dimensions. 

(ii) R-sector: We already know that  the R ground state is a spinor of 

SO(9, 1). A Dirac spinor in ten space-time dimensions has 25 independent 

complex or 64 real components. On shell this reduces to 32 components 

since the Dirac equation 7~c9~,9 = 0 relates half of the components to the 

other half which satisfies the Klein-Gordon equation. We can now still im- 

pose a Weyl or a Majorana condition, each of which reduces the number 

of independent components further by a factor of two. In ten dimensional 

space-time it is however possible to impose both simultaneously 3 leaving 8 

independent on-shell components. They can also be viewed as the compo- 

nents of a Majorana-Weyl spinor of SO(8),  the corresponding little group 

for massless states. It is easy to see tha t  the Ramond ground state is indeed 

massless. We can now choose the ground state to have either one of two 

possible chiralities, which we will denote by [a) and I~/ respectively. The 

first excitation level consists of states a t l l a  ) and bi__lla) plus their chiral 

partners with arm 2 = 1. Again, for d - 10, all the massive light-cone states 

can be uniquely assembled into representations of SO(9).  In table 8.1 this 

is demonstrated for the first few mass levels. 

2The general formula is ~ ( n  + a) = ¢ ( - 1 , a )  = __2.(6a21 - -  6a n u l).  
12 

,~>0 

3The general s tatement  is that  we can impose Majorana  and Weyl conditions simul- 

taneously on spinors of SO(p, q) if and only if p - q = 0 mod 8. For Minkowski 

space-times (q = 1) this is the case for g = 2 + 8n and for Euclidean spaces (q = 0) 

for d = 8n. 
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However, it can be shown that  the fermionic string theory with all the 

states in both  the R and NS sectors is inconsistent. We have to make a trun- 

cation of the spectrum, called the GSO projection [5], which leaves us with 

a tachyon free space-time supersymmetric theory. We will prove both  state- 

ments, the necessity of the t runcat ion and the space-time supersymmetry of 

the resulting spectrum, in Chapter  9 where the first assertion follows from 

the requirement of modular  invariance and the second from the vanishing 

of the one-loop part i t ion function. 

Here we will turn  the argument around and motivate the GSO projection 

by requiring a space-time supersymmetric spectrum. By inspection of table 

8.1 we see tha t  at the massless level this can be achieved by projecting out 

one of the two possible chiralities of the R ground state. This leaves us 

with the on-shell degrees of freedom of N = 1, d = 10 Super-Yang-Mills 

theory: a massless spinor and a massless vector [6]. Obviously, we also have 

to get rid of the tachyon. Let us define a quantum number G which is the 

eigenvalue of the operator G = ( - 1 )  F where F is the world-sheet fermion 

number. If we assign the NS vacuum (-1)FI0)  = -10), i.e. G = - 1 ,  
/ i we can write in the NS sector F = ~ r > 0  b-rbr - 1. If we then require 

that  all states satisfy G = 1, we remove all states with half-integer c~Im 2 

(for which there are no space-time fermions) and some of the other states. 

In particular the tachyon disappears. A general state in the NS sector, 

C~_n l i l  . . .  o~_nivb3_lr]iN " .. . bJMMIO > has G = ( -1 )  M and all states with M even 

are projected out. In the R sector the equivalent of G is a generalized 
~-, b i b ~ 

chiral i ty  o p e r a t o r  r - ( - 1 )  F = - w h e r e  is 

i i the chirality operator in the 8 transverse dimensions and ~n>0  b-nbn the 

world-sheet fermion number operator. It is easy to see tha t  {F, Cg} = 0 and 

the eigenvalues of the R ground states are ±1, depending on their chirality, 

if we define F]a) = I-[/8=1 bila ) = +1 and /" ]a )  = -1 .  Then  a general state 

in the R-sector ii ,~ilv ~Jl b TM [a) has F = ( - 1 ) M ( - 1 ) ~ i S m i  ,° 
O ~ _ r ~  1 . . . ~ n N ~ , _ r n  1 . . .  _ r n  M 
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and i l  iN  " b la) has F - o T h e  OL__nl . . .  a n  N b ~ m  1 . . . .  rn M 

GSO projection then corresponds to demanding that  all states have either 

F = 1 or F = - 1 .  We see from table 8.1 that  making the GSO projection 

we arrive at a supersymmetric spectrum (at least up to the level displayed 

there). 

To obtain the full closed string spectrum we have to tensor the left- and 

right-moving states together obeying the constraint eq.(8.14). We have to 

distinguish between four sectors, two of which ((NS,NS) and (R,R)) lead to 

space-time bosons and two ((NS,R) and (R,NS)) to space-time fermions. An 

additional complication arises because we can choose between two possible 

chiralities for the left and right R ground state. Since in each sector we 

have to satisfy the constraint L0 - L0 = 0, or, equivalently rn2R = m2 L, the 

closed string states are tensor products of open string states at the same 

mass level. The possible states up to the massless level are shown in table 

8.2. There are too many states at the massive level to display there but 

it is straightforward to work out the continuation of the table. Again, we 

have to make the GSO projection. One way to perform it is for the right- 

and left-movers separately. For the NS states we require ( - 1 )  F = +1 

and (-1)/~ = +1 and for the R states F = +1 or F -- - 1  and likewise 

for /~. This leads to several possibilities. For instance, the theory with 

F = _P = +1 has no tachyon and the following massless states: 

Bosons " [ ( 1 ) +  ( 2 8 ) +  (35)v] + [ (1 )+  ( 2 8 ) +  (35),] 

Fermions : [(8)c + (56)c] + [(8)c + (56)c] 

i.e. we get a total  of 128 bosonic and fermionic states, indicating a super- 

symmetric spectrum. The projection as given above defines the type IIB 

string theory whose massless spectrum is that  of type IIB supergravity in 

ten dimensions. The (35)v represents the on-shell degrees of freedom of a 
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Table 8.2 Closed fermionic string spec t rum 

cd(mass) 2 states and their S0(8) little 
representation contents group 

(NS,NS)-sector 

(-1) P (-1) F representation contents with 

respect to the little group 

Io>L x Io)~ 
-2 S0(9) -1 -1 (I) 

(1) (1) 

0 ~1/2]0>L xb~l/2tO)R S0(8) +1 +1 (1)+(28)+(35)~ 
(8)~ (8)~ 

(R,R)-sector 

I~)L x Ib)R +1 +1 (1 )+ (28 )+ (3s ) ,  
(8), (8), 

la)L x Ib>R -1  -1  0)+(2s)+(35)~ (8)~ (8)~ 
so(8) 

la)L X Ib)R 
- 1  +1 (s)~ +(s6)~ 

(8)c (8), 

+1 -1 (8), +(56)= 
(s), (8)~ 

(R,NS)-sector 

]a)L x P_I/=]O>~ 
(8), (s),, 

so(8) 
[a)L x b~l/=10)R 

(NS,R)-sector 

+1 +1 (8)o + (56), 

- z  +z (s), + (s6), 

+Z +1 (S)0 + (56)~ 
(S)~ (8), 

SO(S) 
$~ 1/=[0)L X ]~')R 

+1 --1 (8). + (SS). 

graviton, the two (28)'s represent two antisymmetric tensor fields and the 

(35)s a rank four selfdued antisymmetric tensor. I addition there are two 

reed scalars. The fermionic degrees of freedom correspond to two gravitinos 

(the (56)c) with spin 3/2 and two spin 1/2 fermions. The presence of two 
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gravitinos means that this theory has N = 2 supersymmetry. Since both 

gravitinos are of the same handedness, it is a chiral theory. 

The choice/~ = - /~  = 1 leads to the following massless spectrum: 

representing the degrees of freedom of a graviton ((35)v), an antisymmetric 

rank three tensor ((56)v), an antisymmetric rank two tensor ((28)), one 

vector (8)v) and one real scalar, the dilaton. The fermions can be interpreted 

as two gravitinos of spin 3/2 and to dilatinos of spin 1/2, one each for each 

handedness. Again, we have N --- 2 supersymmetry but non-chiral. This 

theory is called type IIA. 

8.3 P a t h  i n t e g r a l  q u a n t i z a t i o n  

Let us now turn to the path integral quantization of Polyakov. In Chap- 

ter 3 we have seen that to obtain the ghost action we had to re-express the 

Faddeev-Popov determinant as an integral over anti-commuting ghost fields. 

The ghost action was than simply Sg h ,'., f b a s i c  ~ where baB was sym- 

metric and traceless, the tracelessness following from the Weyl-invariance of 

the theory (at least in the critical dimension). In other words, the ghost La- 

grangian followed immediately from the traceless symmetric variation of the 

metric by replacing the gauge parameter ~a by a ghost field c a of opposite 

statistic and introducing the antighost bail with the same tensor structure 

as the gauge field ha~3, but opposite statistics. We will now apply the same 

procedure to the fermionic string. 

The transformations of the zweibein and the gravitino under repara- 

metrizations and supersymmetry transformations are 
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1 i 
ecta6e fl a -- -~ ( P ~  ) 0`/3 - -~ ( ~ fl p0`e ) (8.26) 

6Xa = 2(//(:)0, 3 1 
- Kee ~x,::,(~v,~..,,) + ~xo, v ~  '° + (v~x0`)~ '~ 

where we have made compensating Weyl, Lorentz and super-Weyl transfor- 

mations to eliminate the trace and antisymmetric part in the first line and 

to get p. 6 X = 0 in the second. The parameters of these transformations 

were 

1 0  ̀
A = - ~ V  ~0`, 

1 ~0`~v0`~, (8.27) 
l -  2e 

~/= -p0`V0`e- 4Po`Xfl(P~)0`/3. 

In the critical dimension these are good symmetries and we can chose X to 

be p-traceless, which is what we have done. Then the torsion piece in the 

connection vanishes and all covariant derivatives will be without torsion. 

The ghost Lagrangian is then 

= - - -  [e0`a 6 - - ~ c "  - ~ 0 ` , : , - - - ~ - ~ j  + ~0`L ~ p  - - 
2¢r 2 6E 

= - ~ - ~ i { b o ` / 3 V 0 ` c ~ + ~ o ` V c , 7 +  i~7 [3~7V. c - ~30`7V0`c 

i - ( v .  Z)c~ + ( v J ) ~  - ~b~ ~a~] }. 
(8.28) 

~0  ̀and 7 are commuting spin 3/2 and spin 1/2 ghosts, with p.~ = 0. b0`~ and 

c7 are as in Chapter 5. The factors of i have been included to make 7 real 

and/3 imaginary. In deriving eq.(8.28) we have redefined e --. e -  ½~7X7 and 

made use of the identities given in the appendix of the previous chapter. 

Note that the term in brackets will be absent in superconformal gauge. 4 

4We could also have introduced ghosts for Weyl, Lorentz and Super-Weyl transforma- 

tions, but they would have been integrated out, giving constraints on b~# and ~a, 
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From the ghost action we can now derive the ghost energy-momentum tensor 

and the ghost supercurrent. Using the equations of motion and a gravitino 

in superconformal gauge, we get 

T a f  t = i { b a . ~ / 3  c'y + bl3.~V~c "~ - c'~V.rba/3 

3 - 1 
+ ~(~v~ + ~v~)~  + ~ ( v ~  + v ~ ) ~ } ,  (s29) 

3 a i b . = -i{~Z V~c~ + (v~Z~)c ~ - ~ ~6/~} TF.y 

We could now proceed as in Chapter 3, expand the ghost fields in modes, 

find their contribution to the super Virasoro operators and show that the 

conformal anomaly vanishes in the critical dimension. We will however not 

do this here but rather postpone the discussion until Chapter 12, where we 

will be able to derive the same results in a much easier way using supercon- 

formal field theory. 

resulting in their being symmetric-traceless and p-traceless respectively. Also, we 
would find that only the helicity 4-3/2 components of the gravitino couple, reflecting 

super-Weyl invariance [7]. 
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Chapter 9 

Spin Structures  and Superstring Partit ion Funct ion 

In the first part of this chapter we compute the one-loop partition func- 

tion of the closed fermionic string. We will do this in light cone gauge. The 

possibility to assign to the world-sheet fermions periodic or anti-periodic 

boundary conditions leads to the concept of spin structures which we will 

introduce. The requirement of modular invariance is then shown to result 

in the GSO projection. In the last part we generalize some of the results of 

Chapter 6 to the case of fermions. 

Spin structures in string theory and their relation to modular invari- 

ance were first discussed by Seiberg and Witten [1] and Alvarez-Gaum~, 

Ginsparg, Moore and Vafa [2]. Reference [3] gives a more detailed insight 

into the subject. 

Let us begin by explaining what spin structures on a genus g Riemann 

surface Zg are. As we know from Chapter 6, there are two non-contractible 

loops associated with each of the 9 holes. All other non-contractible loops 

can be generated by deforming and joining elements of this basis. When we 

have spinors defined over Zg we can assign to them either periodic or anti- 

periodic boundary conditions around each of the 2g loops. Each of these 

2 2g possible assignments is called a spin structure on Zg. An important 

distinction is that of even and odd spin structures which is connected to the 

zero mode structure of the chiral Dirac operator which, on X'g, is simply 

Dz and D~ for the two chiralities. We will treat these operators in more 

163 



detail below. We call a spin structure even if the number of zero modes of 

the chiral Dirac operator  is even and we call it odd otherwise. Let us study 

the situation for the torus and then generalize to arbi trary genus. 

We can put  a flat metric on the torus for which the chiral Dirac operator 

is simply Oz. It is then clear that  the only global zero mode is the constant 

spinor. Obviously, only (+, +)  boundary conditions allow for a constant 

spinor where the two entries refer to the boundary conditions along the two 

non-contractible loops. This means that  there are three even and one odd 

spin structure on the torus. For the generalization to arbitrary genus and 

the properties under modular  transformations the following facts, which we 

will state without  proof, are important:  

(i) for a given spin structure, the number of chiral Dirac zero modes is a 

topological invariant modulo two; 

(ii) the number  of chiral Dirac zero modes is additive modulo two when 

we glue together two Riemann surfaces. 

The second fact together with our result for the torus can be used to 

find the number of even and odd spin structures for arbi trary Riemann 

surfaces. It is not hard to see that  there are ~,,,odd (~)3g-'~=2g-l(2g-1) odd 

and ~meven(~)3g--m=29-1(2g+l) even spin structures. Since the number  of 

zero modes of the Dirac operator mod 2 is a modular invariant (this follows 

from (i)), the two classes of spin structures transform separately under 

modular transformations.  In fact it can be shown that  they transform 

irreducibly. This means that  in the computat ion of the part i t ion function 

or any correlation function we have to sum over all boundary conditions 

leading to even or odd spin structures. The relative phases between the 

different contributions are then determined by modular invariance. 

Let us illustrate the above and work out the details for the vacuum am- 

plitude on the torus, the one-loop part i t ion function. As already discussed 

in Chapter  6 we parametrize the torus by two coordinates ~1, ~2 E [0, 1] and 
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define complex coordinates z = ~1 + ~.~ and 5 = ~1 + ~ 2  in terms of which 

the metric is ds 2 = Idzl 2. r is the Teichm~ller parameter distinguishing dif- 

ferent complex structures. Recall that  modular transformations are those 

changes of ~" which lead to identical complex structures. They are generated 

by S : r -* - 1 / r  and T : ~- --* r + 1. Under a general modular  transfor- 

mation r --* ~ the metric changes to ds 2 1 ]2 cr+~ ~ [cr+dl~[d~n + r d ~ n  where 

(~,1 ~n) = (d~ + b~2,c~1 + a~2). We have the following possible boundary 

conditions for fermions, leading to four spin structures: 

¢(~1 + 1 , ~ )  = ± ¢ ( ~ , ( 2 )  
(9.1) 

¢ (~ ,~  + 1)= +¢(~,~).  

Periodic boundary conditions in (1 correspond to the Ramond sector and 

antiperiodic boundary conditions to the Neveu-Schwarz sector. Under an S 

transformation with modula r  ma t r ix  -1 0 : ( ( ~ ' ~ )  --' ((~' -~1)" This  

means that  the fermions transform as ¢((~,(~) ~ ¢ , ( ~ , ( 2 )  cx ¢(~2 _~1) 

from which we easily derive the following action of S on the boundary 

conditions or spin structures: 

( - - )  -~ ( - - )  

s :  (++) -~ (++), (+-) -~ (-+) (9.2) 
(-+) -~ (+-)  

In the same way we find that  under r --~ r + 1 the fermions transform as 

¢((~,(2) __, ¢ , (~ ,~2)  o¢ ¢ ( ~  + (2,~2) which leads to the following action 

of T: 
( - - )  -~ ( - + )  

T :  ( + + )  ---* (++) ,  ( + - )  ~ ( + - )  (9.3) 

( -+) -~  ( - - )  

This demonstrates our general s tatement above that  even and odd spin 

structures transform irreducibly under modular transformations. In string 

theory one of the basic principles is invariance under diffeomorphisms of the 
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world-sheet, also global ones. Since, as we have seen, they do change the 

spin structure, we have, to get modular invariant expressions, to sum over 

all different spin structures in each class (even and odd). At the one loop 

level the (++)  spin structure is invariant by itself, being the only odd one 

and so is its contribution to the partition function. The other three must 

all be included in a modular invariant way. This means in particular that 

we must include both the R and the NS sectors. 

It is now important to note that due to the world-sheet supersymmetry 

algebra, world-sheet fermions ¢~ as well as the gravitino Xa and conse- 

quently also the superconformal ghosts fl, 7, all have the same spin struc- 

ture. Left- and right-movers however can have different spin structures. We 

then denote the contribution to the partition function of the right-moving 

fermions with spin structure (++)  by A(++)(v) and likewise for the other 

three cases and the left-movers. In light-cone gauge we get the following 

expressions which are trivial generalizations of the corresponding expression 

for the bosonic string: 

A(++)(v) = zh++)Tr e27rivHR(--1) F 

A (+-)  (v) --  ~7(+_)Wr e 27rivHR 

A (--) (r) -- z/(__)Tr e 27rirHlvs 

A (-+) (T) = zl(_+)Tr e 2~rirI-I~vs ( -  1)F 

(9.4) 

where the 7 7 are phases to be determined by modular invariance. Let us 

comment on the ( -1 )  F factors. For anticommuting variable the trace au- 

tomatically implies that the fermions satsify anti-periodic boundary condi- 

tions along (2. If we want to have periodic boundary conditions, we have 

to insert the operator ( -1 )  F [4]. The light-cone Hamiltonians in the two 

sectors are (cf. Chapter 8): 
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OO 

HR E i i 1 
= mb_mb m + "~ 

m = l  

(9.5) 
co rh i h i 1 

H N S =  ~ ~--rvr  6 
r=} 

The normal ordering constants follow most easily by subtracting the bosonic 

contribution d-2 from the total normal ordering constant in each sec- --2-4- 
tor, namely 0 (R) and _ 1  (NS). It is now easy to evaluate the different 

contributions to the partition function. For instance, for A(--)(v)  we get 

(q = e2~i~'): 

A(--)(v)  = ~7(__)Tr qHNs 

= q(__)q-1/6Tr q~¢¢--1/2 rbl rbir 

= , ( - - ) q - ' °  II (E (9.6) 
r N, 

O0 

= r/(__)q-1/6 ( I -  [ (I + qn-1/2)) 8. 
n = l  

The calculation is completely analogous to the bosonic case only that the 

occupation numbers are now restricted by the Pauii principle to Nr = 0 

and 1. (This is just  the grand partition function for an ideal Fermi gas with 

energy levels Er = r.) We can now write 

O0 

q-V  n (1 + 
n = l  

OO 

-- {q-1/24 II (1--qn)-l}4{n~-I 1 } - -  (1 -- qn)4(1 + qn-1/2)8 

n = l  = 

04(Ol ~-1 
- -  7?4(7.) 

(9.7) 

where q(r) is the previously encountered eta function and 0 3 one of the four 

Jacobi theta functions. In general, we can define the theta functions. 
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O[~](O[v) = rl(v)e27riO~q~-~ ~I (l +qn+O-1/2e27ri¢) (1+q n-O-1/2e-2~ri~) 
n = l  

+oo 
= ~ exp[iTr(n + 0)27 - + 2zri(n + 0)¢]. 

(9.8) 
Through the one-loop partition function the 0-functions for arbitrary 0 and 

¢ are in correspondence to the generalized fermion boundary conditions 1 

as: 
¢(~1 + 1,~2)= _e-2~riO¢(~1,~2), 
¢ ( ~ , { 2  + 1)=-e-2~r i¢¢({! ,  {2). (9.9) 

The different spin structures then correspond to 

(-4-+) O -- ¢ = 1 /2  A[x/2] -- O 1 ~,1/2J 

(-4--) 0 =  1 / 2 , ¢  -- 0 011~ 21 - - 0 2  

( - - )  0 = ¢ = 0  e[ °] = e  3 
(--+) O = 0,¢ = 1/2 0[,~2 ] = 04 

(9.~o) 

The Jacobi theta functions and their generalizations to higher genus Rie- 

mann surfaces (the Riemann theta functions) play an important role in 

string theory and conformal field theory. They satisfy many amazing iden- 

tities. At one loop, some of the most important ones are 

e~(ol~-)  - e~(ol~-)  + o~(o1~-) = 0 

02(O[r)O3(Ol~')O4(O[r) = 27/3(7-) (Jacobi triple product identity) 

o~(Ol~-) = 2~~3(~ -) 
(9.11) 

where the prime denotes differentiation with respect to the first argument 

(cf. the appendix to this chapter). Also, it is easy to see that 01(0It ) = 0. 

In the same way that we have derived the partition function for the ( - - )  

spin structure, we easily show 

1This will be derived in the appendix to this chapter. 
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o](o1~) 
A(--)(r)  = q(__) rl4(T) 

o4(Ol ~-) 
A(-+)(r) = r/(_+) r]4(T) 

e4(ol;) 
A(+-)('r) = r](+_) rl4(v) 

o14(Ol ~-) 
A(++)(v) = r/(++) r]4(r) 

(9.12) 

Obviously, A(++)(v) -- 0, i.e. the partit ion function for the odd spin struc- 

ture vanishes. This is not surprising since we know that  the Dirac operator 

has a zero mode and A (++) ~ j" DCe-¢~  0¢ = 0. 

We have stated above that  odd and even spin structures t ransform irre- 

ducibly among one another under modular  transformations. This should be 

reflected by the transformation properties of the P-functions. Indeed, from 

the series expansion it is not hard to show that  

(9.13) 

O(I(OIT + 1) = ei~'/40~.(Olr), 
02(OIr + 1) = ei=/402(Olr), 
03(O]rq-1) = 04(Olr), 

o4(o1~ + 1) = o3(o1~-), 

,7(1 + 7-) = g"/12,7(~-),  

which reflects the transformation properties of the spin structures under T 

(cf. eq.(9.3)). Under S they transform as 

(9.14) 

oi(Ol - 1/-,-) 

82(Ol-  lh- )  

o3(Ol-  1/7-) 

o4(o[  - 1 / ' r )  

,(-1/~) 

which corresponds to eq.(9.2). 

= (-iv)3/20~ (01r), 

= (-ir)I/204(OIT), 

= ( - i T ) l / u o a ( O l r ) ,  

= (-i~)1/202(o1~), 
= ( - i ~ ) 1 / 2 , ( ~ ) ,  
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Let us now determine the phases r/. We will first require tha t  the spin 

structure sum is modular  invariant separately both in the left- and right- 

moving sectors. Since only relative phases are relevant we will arbitrari ly 
e (OlT) 

set 77(__ ) = +1, i.e. A(- - ) ( r )  - ~4(7 ) . Using the transformation rules of 

the theta  and eta functions we easily find 

04(OJv) e - ~ / 3  (9.15) A(--)('r + 1)= A(-+)(r)- ~ 

The contribution from the eight transverse bosonic degrees of freedom is 

..~ 1 which contributes an extra factor of e - 2 r i / 3  s o  that  we get for 

the phase fl(_+) = -1 .  Similarly we show that  fl(+_) = -1 .  Clearly, ~?(++) 

cannot be determined from modular invariance; we will show below tha t  

it has to be :i:l. Wi th  these phases the contribution of the right-moving 

world-sheet fermions to the superstring part i t ion function is 

A(w) =Tre  2¢riT"HNs ½(1 + ( -1 )  F+ I )  - Tre 21rirItR ~'(1 - 7/(++)(-1) F) 

1 1 
- 2 , 7 ( , - )  4 {e4(° l ' - )  - e44(°1 ) - e4(°l 'r)  + '7(++)e4(°1")} 

(9.16) 
with a similar expression for the left-movers. The relative sign between 

the two sectors reflects the fact that  states in the NS sector are bosons 

whereas states in the R sector are fermions. The ½(1 + ( -1 )  F) in the 

NS sector is just  the GSO projection. In the R sector it is ( -1 )  F = 4-1 

according to 77(++) = 4-1 which agrees with Chapter  8. Due to the first 

identity in eq.(9.11) and the vanishing of 81, the part i t ion function vanishes. 

This reflects a supersymmetric spectrum: the contributions from space-time 

bosons and fermions cancel. 

It is worthwhile mentioning tha t  there is one other modular  invariant 

combination of boundary conditions: it consists of summing over the same 

boundary conditions for the left- and right-movers. It follows that  the left- 

and right-moving sectors are not separately modular  invariant due to the 
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non-trivial connection between their boundary conditions. This leads to the 

following part i t ion function: 

= Wre 2 i HNs-2 i aNs ½(1 + ( -1)  F+p) 

+ Tr e 27ri'rHR-2~'/÷/~a 1(1 - 77++(-1)F+-P). 

If we include the contribution from the bosons we get 

1 1 IO (Ol,-)18 + IO3(Ol-,-)18 + IO4(Ol,-)1 s 
X(7", "T) - -  2 (ImT") 4 [ r t ( r ) [  24 (9.18) 

Modular invariance of this expression is easily checked. This theory has 

only space-time bosons and contains a tachyon. The GSO projection in the 

NS sector is ( - 1 )  F + p  = 1 which does allow the tachyon in table 8.2. 

Let us now give the argument why the phase ~7(++) can only be +1. 

Clearly, for the part i t ion function to have the interpretat ion as a sum over 

states we can only allow q(++) = 0 or =t=1. If we look at the parti t ion 

function at two loops it will be expressible in terms of the appropriate 

Riemann the ta  functions, ten of which correspond to even and six to odd 

spin structures. In the limit where the genus two surface degenerates to two 

tori, the genus two theta  functions become simply products of Jacobi theta  

functions. Especially 01 (rl)Ol (v2), where rl,2 are the Teichmfiller parameters 

of the two resulting tori, is the degeneration limit of an even the ta  function 

at genus two which has to be part  of the part i t ion function since the even 

the ta  functions transform irreducibly under global diffeomorphisms (the 

Dehn twists) of the genus two surface; tha t  means that  77(++) - 0 is excluded. 

Let us close this chapter with the extension of some results of Chapter 

6 to the case of fermions. We know from Chapter 7 that  the covariant 

derivative acts on a spin 1/2 world-sheet fermion as D a ¢  = c9~¢ - ½ ~ p ¢  

where ~a is the spin connection. In conformal gauge, with zweibein e a  a - -  

eg/2~ a the spin connection is we = ½eaflc3~cr. In local complex coordinates 

the covariant derivatives act on the two helicity components as D z ¢ .  = 
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(C)z ::F ¼0zCr)'¢+. Now recall our discussion in Chapter 7, where we had 

to rescale the fermions to arrive at the action in conformal gauge. Under 

conformal transformations they transform with weight 1/2 (this follows from 

the invariance of the action or from eq.(7.47)) and the factor by which 

we had to rescale them was exactly the square root of the zweibein. But 

multiplying the fermions with the square root of the zweibein converts their 

tangent space index to a world index. Let us denote the transformed spinors 

by ea/4¢+ -" (b±. Since the zweibein is covariantly constant, the covariant 

derivative acts on the ¢± as Dz~b+ : (C3z - ½c3zo')~/+ and Dz~b_ : C)z~b_. 

Extending the notat ion of Chapter 6 to tensors of half-integer rank, we 

find tha t  ¢+ E T (1/2) and (hZ~')I/2~_ E T (-1/2). We can then extend the 

definition of covariant derivatives eqs.(6.9,10) and to general half-integer n. 

The scalar product  eq.(6.4) also generalizes. Of particular interest is the 

Pdemann-Roch theorem which holds without modification. We can then 

complete table 6.1 for half-integer n in the same way as we did for n E Z 

in Chapter  6. The only subtlety is at genus one. For integer n > 0 there is 

always a constant zero mode of V(z n). For n E Z + ½ this is only true for 

the odd spin structure. The results are collected in table 9.1. 
Table 9.1: 

g 

0 

dim kerV(Z ) dim kerV~,~+l) 

0 

1 for 

0 for 

1 

1 

>1  

2 n + 1  0 

1 1 

0 

n = 0  g 

odd spin 
s t ructure  

even spin 
s t ructure  

n > o ( 2 .  + 1)(g - 1) 

We find tha t  there are two zero modes of V~/2) at g = 0 corresponding 

to conformal Killing spinors or zero modes of the superconformal ghost 7- 

The zero modes of V(Z3/2) indicate the presence of super-moduli. We will 

however not discuss them here. The ghost zero modes for arbi trary (integer 

and half-integer) n will be discussed in Chapter  13. 
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Appendix  C. 

In this appendix we want to generalize the computation of the fermionic 

partition function for general boundary conditions 

¢(~ + 2~) = -e -2~ i°¢(~)  (c.1) 

which requires the world-sheet fermions to be complex. The action for one 

chirality (say the right-movers) is 

S = -Tri / d2 ~ ct0+ ¢ 

with energy-momentum tensor 

~-- 2 ( . ¢ t ( ~ _ ¢  -3 t- ¢o_¢t). T 

The anti-commutation relations are 

{¢t(~),  ¢(o , )}  = 2 ~ ( ~  - J ) .  

The mode expansion is 

and we find 

¢(~+) = ~ b,,+o_½~- -~(.,+o-½)(.+,.) 
nEZ 

Ct(~+) : ~ b~+o_½~(,,+o-½)(,-+~) 
nEZ 

(c.2) 

(c.3) 

(c.4) 

The bn and b[~ 

1 f0 2~r T(cr)d~ H= 2~ 
1 = ~ (,-,+o- ~) 

nEZ 

(c.~) 

{b~+o_½,bn+o_ ½ } =Sm,n. (C.6) 

are annihilation operators for q > O. The Hamiltonian is 

24 ' 
(C.7) 
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where we have introduced the mode number operators (q > 0) 

-% = b_,,bt_,, ' (C .S)  

The normal ordering constant follows from the general formula given in 

footnote 2 of Chapter  8. (We have taken [0[ < ½.) The partition function 

is then (N = ~ n > 0  Nn+0_ ½) 

A(O, ¢) = Tr e2rri¢(N-1V)q H 

-- rj(r) -- det((;90, ¢). 

We have inserted the operator e 27tiC(N-N) to enforce the boundary condi- 

tions in the (2-direction on the torus (cf. eq.(9.9)). We have also included 

an extra phase for convenience. This result is valid (up to a phase) for all 

0 and ¢. 

Let us finally give some more information on theta functions. They are 

functions of two variables O[~](z[r) and have a series expansion (Imp" > O) 

O[~](zl'r ) = ~ exp[iTr(n + O)2r + 27ri(n + O)(z + ¢)1. (C.10) 
n~Z 

Clearly 

= ( o . 1 1 )  

The first argument, or the shift in the ~2 boundary condition if we use 

eq.(C.11), is important  when we couple the fermions to an external field. 

However it will not enter in our applications. An alternative representation 

of the theta-functions as an infinite product was given in eq.(9.8). It is not 

hard to show the transformation properties under S and T transformations, 

the generators of the modular  group: 
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o[~](o1~ + 1)= ~-~/°~-o/[o+~_}](ol~) 

1 o[g](Ol- ~)= vzc-~2'~e¢~o[-$](Ol ~-) 7F 

larg v/-~--~l < ~. 
(c.12) 

The first equation follows directly from the sum representation. To show 

the second one uses Poisson resummation (cf. Chapter 10). 
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Chapter 10 

Toroidal  C o m p a c t i f i c a t i o n  of  the  C losed  B o s o n i c  
Str ing  - l O - D i m e n s i o n a l  H e t e r o t i c  S tr ing  

So far we have described two kinds of closed oriented string theories. 

First, the closed bosonic string theory was formulated consistently in 26 

space-time dimensions. The spectrum of physical states contains a negative 

(mass) 2 scalar tachyon and, at the next level, with (mass) 2 - 0, a sym- 

metric traceless tensor (the graviton), an antisymmetric tensor field and a 

scalar dilaton. These states are accompanied by an infinite tower of mas- 

sive excitations. As such, the closed bosonic string has many serious, phe- 

nomenological drawbacks: flat 26-dimensional space-time, the appearance 

of a tachyon and the non-existence of space-time fermions. 

Some of these difficulties could be overcome by the 10-dimensional 

fermionic string theories. Modular invariance forces to project onto a space- 

time supersymmetric spectrum which excludes the scalar tachyon. The low- 

est states are again the massless graviton, antisymmetric tensor field and 

dilaton which are now accompanied by their superpartners, namely two 

gravitinos and two dilatinos. Therefore the theory has N - 2 space-time 

supersymmetry in 10 dimensions. 

In conclusion, both the bosonic and fermionic closed string theories de- 

scribe a higher dimensional theory of pure (super) gravity at the massless 

level. However, one would like to include also non-Abelian gauge inter- 

actions, massless scalars and fermions and formulate the theory in four 

space-time dimensions. Both of these goals can be reached simultaneously 
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when "compactifying" some of the string coordinates on an internal com- 

pact space. However, the notion of compactification should not be taken 

too literally - we will eventually learn that, in the field theory sense, the 

"string compactifications" are, in general, no compactifications at all. With 

the most general ansatz of constructing four-dimensional string theories, the 

concept of critical dimension is replaced by the reqttirement that  the central 

charge of the Virasoro algebra is zero. This can be realized by introduc- 

ing only four "usual" string coordinates corresponding to four-dimensional 

Minkowski space-time and in addition a two-dimensional (super) conformal 

field theory which has to satisfy the consistency constraints of unitarity, 

locality, conformal invariance, modular invariance etc. Simple realizations 

of these internal conformal field theories are two-dimensional bosons living 

on a torus or free two-dimensional fermions. Moreover, many construc- 

tions may turn out to be quantum mechanically equivalent, e.g. via the 

two-dimensional equivalence between bosons and fermioas. This will be 

discussed in Chapter 11. 

In this chapter we restrict ourselves to discussing the toroidal compact- 

ification of the closed bosonic string and the construction of the supersym- 

metric 10-dimensional heterotic string theory. In Chapter 14 we will discuss 

theories in four dimensions. 

Compactification of closed strings on a torus was first discussed by 

Cremmer and Scherk [1] and by Green, Schwarz and Brink [2]. References 

[3, 4] initiated further developments. Additional literature can be found 

in [5]. The heterotic string was invented by Gross, Harvey, Martinec and 

Rohm [6]. 

10.1 Toro ida l  c o m p a c t i f i c a t i o n  of  t h e  closed bosonic  s t r i n g  

For illustrative purposes we first consider the simplest case of one coordi- 

nate compactified on a circle of radius R. It means that for one spatial 
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coordinate, i.e. X 25, we require periodicity such that points on the real axis 

are identified according to 

X 25,-.,X 25+27rRL , L E Z .  (10.1) 

Thus, X 25 describes the one-dimensional circle S 1. In other words, S 1 is 

obtained by dividing the real line by the integers times 2~rR 

S 1 = R/2zcRL , L E Z, (10.2) 

which also defines the equivalence relation eq.(10.1). Now, the coordinate 

X2~(cr, r), 0 G a _< 27r, maps the closed string onto the spatial circle 0 < 

X 25 _< 2~rR. Therefore we have to reformulate the periodicity condition a 

closed string has to obey in the following way: 

X25(cr + 2~r, r) - X2~(cr, r) + 2rcRL. (10.3) 

The second, new term describes string states which are only closed on the 

circle however not on the real axis. These states correspond to so-called 

winding states; they are characterized by the winding number L that counts 

how many times the string wraps around the circle. This phenomenon has 

no counterpart in the theory of point particles. The winding states are 

topologically stable solitons; the winding number cannot be changed with- 

out breaking the string. Such solitons always exist if the internal manifold 

contains non-contractible loops. 

We get the following mode expansion for X2S(cr, r) which respects 

eq.(10.3) 

x~(~ ,  r) = ~ + 2p~  - + LR~ + ~ E ! ( ~ - ~ , ~ ( ~ - ~ / +  ~-~(~-+~/). 
n#0 n 

(10.4) 
x 25 and p25 obey the usual commutation relation 

[ z 2 5 , p 2 5 ]  = i .  (10.5) 
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p2S generates translations of x 2~. Singlevaluedness of the wave function 

exp(ip2Sx 25) restricts the allowed internal momenta to discrete values: 

p25 __ 
R , M e Z. (10.6) 

We sprit X25(~, ~-) into left and right movers. 

X~5(r+o ' )  = lx25 + (p25 + L R ) ( v  + o') + i E n n 
n#0 

n#0 

The mass operator gets contributions from the soliton states (remember 

that cz I = 2)" 

1 M 1LR,2 rn 2 = -~(--~ + ~ ) + N  L - l ,  

1 M 
I ,  (1o.8) 

M 2 1 2 2  

w h e r e  r n  2 24 # M 2 -- -~ t~=O PoP • The factor -~- is the contribution from the 

momenta in the compact dimension and the term 1L2R2 is the energy 

required to wrap the string around the circle L times. 

Physical string states have to satisfy the reparametrization constraint 

eq.(3.18) 
m 2 = m  2 +--+ N R - N L = M L .  (10.9) 

Let us examine the spectrum of the effectively 25-dimensionM string the- 

ory. First consider states with no winding number and internal momentum 

excitations. 

(i) The lowest energy state is again the scalar tachyon with m 2 = - 2  (we 

suppress the space-time momentum) 

{tachyon)--lO>. (10.10) 
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(ii) At the massless level with N L = N R = 1 there are now the 25- 

dimensional graviton, antisymmetric tensor and dilaton. 

IC~>  = ~'_1~_110> ~,~ = 0 , . . .  ,24 (10.11) 

with the oscillators in the 25 uncompactified space-time directions. 

(iii) In addition to these states which were already present in the uncom- 

pactified theory there are also new states which arise from the com- 

pactification. We can replace one space-time oscillator by an internM 

oscillator to get two vector states: 

IVY> =  '_,a2211o>, 
(10.12) 

Iv?> = • 

These massless vectors originate from the Kaluza-Klein compactifica- 

tion of the bosonic string on the circle - they are just  part  of the orig- 

inally 26-dimensional graviton and antisymmetric  tensor field. They 

give rise to a U(1)L x U(1)R gauge symmetry  which corresponds to 

the left and right isometries of the circle. Of course, the appearance of 

these two gauge bosons is expected in any field theoretical compacti- 

fication. 

(iv) Finally, acting with two internal oscillators on the vacuum we obtain a 

massless scalar field which is also a compactified degree of freedom of 

the 26-dimensional metric; its vacuum expectation value corresponds 

to the radius R of the circle: 

I¢> = (lO.13) 

Let us now turn  to the more interesting case, namely states wi th  non- 

trivial internal momentum and winding number. Therefore we act now with 

the oscillators on the soliton vacua IM, L). We will concentrate on the first 

winding sector, M = :EL = 4-1. 

Choosing M = L = 4-1 we derive from eq.(10.8) tha t  
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i 
2R 2+ R 2+NL-2,  

rn2R = 1 ~ 3 2 R  ~ + R 2 + N R -  -~ , (10.14) 

rn2 - 1 41_ -- R2 H- R 2 + N L H - N R - 2 .  

The level matching constraint eq.(10.9) is satisfied if N L = O, N R = 1. Thus 

we have two vector states of the form 

[Va~)=c~_ 1 [ i l , - ' F l > ,  a = 1 , 2 ,  # = 0 , . . . , 2 4  (10.15) 

and also two scalars 

lea> - o'~1 + 1,4-1) (10.16) 

with mass which depends on the radius of the circle 

m2(R) - ~-~ + R 2 - I .  (10.17) 

Analogously we can set M = - L  = 4-1. Then eq.(10.9) is satisfied if 

N L - 1, N R = 0 and we obtain again two vectors and two scalars 

IV' ) = ± i ,  =FI>, 

[¢1a) = ~ i l - - t - -  1, :FI )  

with mass also given by eq.(lO.17). 

a = 1 , 2 ,  # = 0 , . . . , 2 4  
(10.18) 

It is easy to see that m2(R) _> 0 with 

equality holding for R = ~/2 = v/'~ I. This means that for this particular ra- 

dius, which is determined by the string tension, we get extra massless states, 

of which the massless vectors are of particular interest. This phenomenon 

is of utmost importance in the theory of the compactified bosonic string. 

The four additional massless vectors form, together with the massless vec- 

tors of eq.(10.12), the adjoint representation of SU(2)£ × S U ( 2 ) R .  The 

oscillator excitations eq.(10.12) with zero winding number correspond to 

the U(1)L x U(1)R Caftan subalgebra generators of S U ( 2 ) L  x S U ( 2 ) R ,  the 

soliton states of eqs.(10.15) and (10.18) to the (non-commuting) roots (this 
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will be put on more rigorous grounds in the next chapter). (M + L, M - L) 

are the U(1)L × U(1)R quantum numbers. It is easy to convince oneself that 

these additional massless vectors are the only ones possible for any choice 

o f M ,  L and R. We then also have extratachyons M = O, L - -  11 and 

M = ± I ,  L = O .  

We have seen that for a special value of the radius of the compact circle 

one gets an enhancement of the gauge symmetry due to the soliton states. 

This can never occur in any point particle compactification. Furthermore, 

for R = x/~ we get also eight additional massless scalars 

c ~ I +  1,-t-1 }, ~ I + I , : F I > ,  ]+2,0), ]0,+-2) (10.19) 

which, together with a25_,~2s_, 0, 0) (cf. eq.(10.13)) form the (3,3) representa- 

tion of SU(2)L x SU(2)R. However, for arbitrary values of the radius, both 

the four non-commuting gauge bosons of SU(2)Z x SU(2)R and the four 

scalars with internal oscillator excitations are massive - the gauge symmetry 

is broken to U(1)L × U(1)R. Therefore this phenomenon can be interpreted 

as a stringy Higgs effect. For arbitrary radii these four massive scalars build 

the longitudinal components of the four massive vector particles. Two of the 

remaining scalars in eq.(10.19) become massive and the other two become 

tachyons. 

The U(1)/; x U(1)R gauge bosons on the other hand stay massless for 

all values of R. This also the case for the single scalar of eq.(10.13). In a 

low energy effective field theory this neutral scalar will have a completely 

flat potential which corresponds to the freedom of choosing the radius of 

the circle as a free parameter. In summary, the spectrum of the bosonic 

string compactified on S 1 is characterized by a single parameter, also called 

modulus, namely the radius of the circle which is the vacuum expectation 

value of the scalar field eq.(10.13). However at this point one must be quite 

careful. Inspection of the mass formula eq.(10.8) shows that the spectrum 

is invariant under transformations R -~ ~ if one simultaneously also inter- 

183 



changes the winding numbers L and the momenta M. This t ransformation 

is called a duali ty transformation where the point R = v ~  is a fixed point 

under this transformation.  It means that  the compactified string theory 

looks the same regardless whether we consider it at large or small radius 

of the internal circle. 1 Therefore the spectrum of the compactified bosonic 

string is already completely characterized by the values R > v~,  or, equiv- 

alently, R _< v/2; i.e. the so-called moduli space of this theory is not the 

whole real axis but  only one of the above intervals. The invariance under 

duality indicates tha t  in string theory one cannot probe distances smaller 

than the string size. 

We now want to generalize this mechanism to the case where we com- 

pactify D bosonic coordinates on a D-dimensional torus T D. The resulting 

theory is therefore ( 2 6 -  D)-dimensional. The torus is defined by identifying 

points in the D-dimensional internal space as follows (compact dimensions 

are labeled with capital letters): 

D 
X z "  Xz + v/2~ E niRie~ = X z + 27rn z, ni E Z (10.20) 

i=1 

with 

LZ = ~i~_lniRie ~ (10.21) 

T h e  ei = {e~} (i = 1 . . . 9 )  are D l inear  independent vectors normalized 

to (ei) 2 = 2. The £ = {L z} can be thought of as lattice vectors of a D- 

dimensional lattice AD: I, E A D. This lattice has as basis the D vectors 

V/~Riei. Therefore the torus on which we compactify is obtained by dividing 

R D by 2~rAD: 

T D = RD/27rA D. (10.22) 

1Strictly speaking one has to make sure tha t  the S-mat r ix  elements t ransform prop- 

erly. One can show that  this is indeed the case. 
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Center of mass position and momentum satisfy canonical commutat ion re- 

lations 

I x ' , / ]  = i 6 " ,  (10.23) 

i.e. / generates translations of x '  and single valuedness of e iz•/  requires 

that  L I /  E Z, i.e. the allowed momenta  have to lie on the lattice which is 

dual to A D, denoted by (AD)*: 2 

D 
pI = vf~ ~ re_i/ , ,  (10.24) 

i=1 Ri et 

* I  where the e i are dual to the e~, i.e. 

D 
I , I  eiej -- ~ij. (10.25) 

, = 1  

Their normalization is (e*) 2 = 1. From eq.(10.25) it follows that  

D 
e i'-*Je i = 5 ' ] .  (10.26) 

i=1 

* 5~e.* The basis vectors of (A D) are ~i ~" 

The condition a closed string in the compact directions has to satisfy 

now looks like: 

X I ( q  + 2~r, T) = Xr(cr, v) + 27rL x. (10.27) 

Thus the L z play the role of winding numbers. The mode expansion be- 

comes: 

e-in(r+rr) , 

n¢O 
(10.28) 1 1LI)(. q 

e- in(r -q)  
2 n¢O 

The mass formula is (m 2 _ ~25-Dp~p#)  -- tz=0 

2Some basic facts about lattices are collected at the beginning of section 11.2. 
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1 D 1 / 2  
m 2 = -~ ~-~_,(p/+ -~n ) 

I=1 

1 2 
+ g r -  z = ~v~ + N L - 1 ,  

i D 1 / 2  
m 2 = ~ ~ ( f  - ~L ) 

I=1 

1 2 + N R -  1 = ~vR + NR - 1, 

+ = + - 2 + E ( / / +  L'L') 
I=1 

(10.29) 

= NL + N R -  2 + 
m 1 

i , j=l 

with PL,R = P 3= ½r. gij and 9i*j are the metrics of A D and (AD)*: 

1 D 
_ _ R i e i R j e j ,  gij -- 2 Z I r 

I=1 

D 1 *Z 1 *I 
gi*~- = 2 Z ~iei ~ j e j .  

I=1 

( l O . 3 O )  

With eqs.(10.25) and (10.26) it follows that 9i~ = (g-1)ij" The volumes of 

the unit cells are vol(A D) = dv/-d-~g and vol((AD) *) = dvq~-g* = 1 

The constraint eq.(10.9) generalizes to 

D 
NR - N L  = p" L = E m i n i .  (10.31) 

i=1  

Using this information one can easily show that the 2 D - d i m e n s i o n ~  vectors 

P = (PL, PR) build an even self-duaJ lattice 3 FD, D if we choose the signature 

of the metric of this lattice to be of the form ((-t-1)D, ( - 1 ) D ) ;  i . e . P ,  pt _ 
I I l _I _/ Y]I(PLPI, --PRPR)" Therefore FD, D is called a Lorentzian lattice. Self-duality 

of I'D, D follows from the definition of the mutual scalar product between 

two different  vec tors  P a n d  pt: p . p t  = ~ i = l  ( m i n  t + nim~ ) E Z. Note  

however that, given the vectors (PL, PR) E I'D, D, the set of vectors pz,  PR do 

3Our notation is such that we denote the left- and right-moving momentum lattices 

by T'~,a and the winding vector lattice by A. 
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not, for a general metric on the torus, form separate latt ices/"L,/ 'R in spite 

of closing under addition. For example, consider the two-dimensional even 

Lorentzian self-dual lattice/"1,1 consisting of points (-~ + ½LR,--g-M ½LR). 
The left (or right) components alone, even though they close under addition, 

do not form a one-dimensional lattice. For general real values of R we cannot 

write all possible PL as the integer multiple of one basis vector. A torus 

compactification where the left and right momenta PL, pR build separately 

Euclidean lattices /"L and/"R is called rational. The notation 'rational' is 

used since /'g, FR can be decomposed into a finite number of cosets (see 

Chapter 11). In this case the possible U(1) charges are rational numbers 

and the corresponding conformal field theory is rational. For example, the 

lattice/'1,1 is only rational if R 2 is a rational number. 

As before, the sector without any winding and internal momentum con- 

tains a (26 - D)-dimensional tachyon, a massless graviton, antisymmetric 

tensor and dilaton. Furthermore there exist 2D massless vectors of the form 

iVl~Z) ~ -x = 

I v?")  - ( lO.32) 

which are the gauge bosons of [U(1)] D x [U(1)] D reflecting the isometry 

group of the torus [U(1)] D. Finally, there are D 2 massless scalars 

[¢z.z) _ o/_l&J_l[O), (10.33) 

These scalar fields correspond to the moduli of D-dimensional torus com- 

pactifications of the bosonic string. Of the D 2 scalars ~ (D+I )  are the inter- 

nal graviton components; their vacuum expectation values give the constant 

background parameters gij which describe the shape of the D-dimensional 

torus T D. The remaining ~ ( D  - 1) scalars are the internal components 

of the antisymmetric tensor field Bij which may also acquire constant vac- 

uum expectation values. This kind of background fields will also influence 

the string spectrum and therefore enter the mass formula eq.(10.29). The 
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B"  e*IB"e*.J  = Ri i *~ 3 /~j background fields are coupled to the free bosonic 

fields X r via an addit ional  term in the bosonic string action: 

1 /d%¢a~BzjO~Xi(~,~. lO~Xj(~, ,~.)  (10.34) S=8- 
where we have assumed that  the antisymmetric tensor has nonvanishing 

components only in the compactified directions and that  it is constant. This 

term induces a change in the internal canonical momenta H I - OS 
o ( a . x x )  - 

~--Y~I (pZ + ½BtjL J + oscillators). This does however only affect the center of 

mass momenta.  They are now given by zd -- pZ + ½BzsL ]. These vectors 

now generate translations and lie on the lattice A~) which is dual to A D. 

The center of mass momentum which enters the mass formula is still given 

by pX. PL and PR can be expressed in terms of the zd instead of the pX: 

I = 7r z l ( s z :  BZ:)Ls Pz,,R i 2" :F 

/-~mi ,I  1 /1- I ~ 1 , I  (10.35) 

It is again instructive to calculate the inner product of two vectors P = 

v '  = e rD, : P .  v '  = + We see 

that  the inner product  does not depend on the choice of background pa- 

rameters gij and Bij. Using this background independence we can take for 

example gij = 5ij (e( = v/'25[, Ri = R = 1) and Sij  = 0. Then FD, D is 

manifestly an even self-dual Lorentzian lattice and we conclude tha t  FD,D is 

self-dual for any value of the background fields. We have seen tha t  the torus 

compactification of the bosonic string is described by D 2 real parameters. 

The D 2 dimensional parameter space of the background fields is therefore 

called moduli space of the torus compactification. Different values of the 

D 2 parameters correspond to different choices of the Lorentzian, self-dual 

lattices I'D, D. This fact is very useful to obtain more information about 

the geometrical structure of the moduli space. It is known tha t  all possible 

Lorentzian self-dual lattices can be obtained from each other by SO(D,  D) 
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Lorentz rotations of some reference lattice/-'0 which can always be chosen 

to correspond to Bi j  -- 0 and gij  -" 6ij .  However not every Lorentz rotation 

leads to a different string theory since the string spectrum is invariant un- 

der separate rotations S O ( D ) L  , S O ( D ) R  of the vectors pL and pn (see the 

mass formula eq.(10.29)). Therefore distinct compactified string theories, 

i.e. different points in the moduli space correspond to points in the coset 
SO(D,D)  

manifold SO(D)xSO(D) which is of dimension D 2. We conclude that  the ge- 

ometrical structure of the moduli space is given by this manifold. However 

the string spectrum is again invariant under generalized, discrete duality 

transformations involving the background fields gij and Bi j .  Therefore the 

global structure of the moduli space is quite complicate in the sense that  

those points in the above coset which are connected by the duality trans- 

formations have to be identified. 

Let us now turn to the soliton states and assume that  Bi j  = 0. By 

the same arguments as before we might expect additional massless state 

for special values of the radii Ri. We are again particularly interested in 

massless vectors. Inspection of eq.(10.29) shows that  we need either p2 = 

2, NL = 0 with PR = O, N R = 1 or L and R interchanged. Together with 

eq.(10.31) this means that  the only possibilities to get massless vectors 

are m i = ::kn i -" 4"1, rnj -- n j  = 0 for i ~ j and gij -- 2~ij. This 

z = x / ~ [  and the gauge group is corresponds to Ri - v/'2, V i = 1 , . . . ,  D,  e i 

[SU(2)] D x [SU(2)]R D. In this case PL,R build the weight lattice of [SU(2)] D. 

This is a trivial extension of the case considered before in the sense that  the 

bosonic string is compactified on D orthogonal circles with radii R = x/~. 

We do however want to get more general and in particular larger gauge 

groups such tha t  FL,R contain the root lattice of some gauge group GL, R. 

This is only possible if one considers also a non-trivial antisymmetric tensor 

field background Bi j .  
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As the simplest non-trivial example with non-vanishing Bij consider 

the toroidal compactification of two dimensions. Choose for the two- 

dimensional lattice A2 the root lattice of SU(3) with basis vectors et -- 

(v/2, 0) and e2 -- (~2, V/g23-)" We further set R1 -'- R~ --- R. This fixes two 

metric background fields, namely the ratio of the two radii and the relative 

angle between el and e2. Only the overall scale R is left as a free param- 

eter. The antisymmetric tensor field background is given by Bij - Beij. 

For generic R and B the gauge group is [U(1)] 2 x [U(1)] 2. However at the 

critical point R = v/2, B -- ½ the bosonic string has an enlarged gauge 

symmetry [SU(3)]L × [SU(3)] R. In this case the lattice F2,2 contains lat- 

tice vectors p - (pL,0) and pl -__ (0,pR) with PL, PR being the six root 

vectors of SU(3). These states correspond to the non-Abelian gauge bosons 

of [SU(3)] L x [SU(3)]R. In fact, one can easily verify that the lattice/"2,2 

is the weight lattice of [SU(3)]L × [SU(3)] g specified by the three allowed 

conjugacy classes (0,0), (1,1) and (2,2) where 0, 1 and 2 are the three con- 

jugacy classes of SU(3) (see next chapter). We are therefore dealing with a 

rational lattice for this choice of background fields. 

Instead of discussing more examples with non-vanishing antisymmetric 

tensor field background let us consider the problem from a different point of 

view which also provides the key for the construction of the heterotic string. 

Consider again the mode expansion eq.(10.28). So far, only the oscillators 
I - I  an, a n were treated as independent variables, however, the center of mass 

coordinate x x and the momenta p~ were not. This is in fact necessary if one 

wants to maintain the interpretation that the X~(~z, ~') are coordinates in 

some D-dimensional manifold. In this case the left- and right-moving modes 

must have common center of mass and common momentum. However, for 

general two-dimensional world-sheet bosons this is not necessary; we are 

free to regard X[ ,  XR I as completely independent two-dimensional fields 

with expansions 
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n#O 
(10.36) 

O 0  

n#O n n 

It means tha t  one gives up the naive picture of compactifying the string on 

an internal  manifold. The proper way of understanding this is to regard 

the resulting theory as a string theory in (26 - D) space-time dimensions; 
I I XL,  X R are boson fields which are needed as internal degrees of freedom to 

cancel the conformal anomaly. Since for closed strings the fields have to 

satisfy X~,R(a + 2zr) ~_ X~,R(Cr ) where the identification is up to a vector of 

a lattice AL,R, we find that  treating XL x and X~ as independent necessitates 

tha t  they are compactified, however not necessarily on the same torus. The 

periodicity requirement entails that  p~ and p~ have to be interpreted as 

winding vectors, i.e. PL,R 6 AI,,R. B u t  plL, R alSO generates translations of 

z z The commutat ion relations are L,R" 

J i6  r J  PL,R] -- 

X I  Y [ L.R, O. • PR,L] : 

( o.37) 

The second commutator  follows from our assumption that  left- and right- 

movers are independent.  There is actually a subtlety here. Eq.(10.37) are 

not the canonical commutation relations. For a purely left-moving boson 

with the normalization of x x and pZ as in eq.(10.36), the canonical mo- 

mentum would be //L / = 1 x ~-~cgrX from which we would get the canonical 

commutat ion relations [z~L,pJz] = 2i6 zJ. However, requiring the X r to be 

purely left-moving constitutes a constraint: ¢I  = (Or - cg~r)X~ = 0. From 

{¢~(cr, r) ,  ¢~(crt, r)}p.B. = -81r0cr~(cr - crt), we conclude that  it is second 

class. As described in Chapter 7, we have to replace the Poisson bracket 

by a Dirac bracket. This leads to eq.(10.37). (With these commutators 

we also get that  [xl ,p  "r] = i where x x - x~ + x~ and 2 /  = p~ + pZ R. 
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• I I 

Cf. also the discussion in Section 3.1.) Singlevaluedness of  e ~pL,RXOL,R re- 

A *  . * quires tha t  PZ,R 6 L,R, i.e. we find that  Pz,R E AZ,R N AZ,R := FZ,R. 

The 2D-dimensional vectors p = (PL,PR) again build a Lorentzian lattice 

FD, D = F L ® FR, and modular  invariance forces this lattice to be even, 

self-dual (cf. the discussion in the next section). 

Let us now discuss the spectrum of this theory. The mass formula and 

reparametrizat ion constraint are 

m2,R __ 1 2 "~PL,R + NL,R -- 1, 
(10 .3s)  

1 2 
NL - NR = ~(vR - v ~ ) .  

Clearly, we still have the U(1) gauge bosons of eq.(10.32). Additional mass- 

less (26 - D)-dimensional  vectors are obtained if there exist lattice vectors 

p = (pL, PR) 6 FD,D with the property p2 z = 2, pn = 0 or 1o 2 = 2, PL = O. 

The corresponding massless vectors have the form 

IVY> = o," It, 2 2, = 0) - 1  - -  P R  ' 

(10.39) 
IV~> = ~"-,IvL = 0 , v  2 = 2>. 

So if EL, R contains IL,R vectors PL,R with 2 PL(R) = 2 we get l~,R massless 

vectors IV~R). These vectors correspond to the non-commuting generators 

of a non-abehan Lie group GL, R. The p2L,R = 2 vectors must therefore be 

roots of GL, R and G/;,R must be simply laced. 4 This means tha t  FL,R must 

contain the root lattice of a simply laced group GL,R. Then the massless 

vectors of eq.(10.39) build, together with the states eq.(10.32), the gauge 

bosons of the non-Abehan gauge group GL x GR with dim (GL(R)) = IL(R)+ 

D and rank(GL) = rank(GR)  = D. The oscillator excitations eq.(10.32) 

4A Lie group G is simply laced if all its roots a i  have the same length which can be 

normalized to Oil 2 = 2V i = 1 , . . .  ,dim G. Dots in the Dynkin diagram (correspond- 

ing to simple roots) are then either disconnected or connected by a single fine. This 

leaves only Dr, "" SO(2n) ,  An "~ S U ( n  + 1) and E6,7,8 or products thereof. 
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correspond to the [U(1)] D x [U(1)]R D Caftan subalgebra of a L x GR. Note 

that GL and GR are in general different. 

In conclusion, toroidal compactification of the bosonic string may be 

viewed in two ways: as compactification of independent left- and right 

movers on different tori or as compactification on the same torus in the 

presence of background Bij and gij fields. 

10.2 T h e  h e t e r o t i c  s t r ing  

The important observation is now that since we have treated the left- and 

right-moving compactified coordinates as completely independent, we can 

drop either one of them. This is the starting point of the heterotic string 

construction which we will discuss in the following. 

The heterotic string is a hybrid construction a left-moving 26-dimensio- 

nal bosonic string together with a right-moving 10-dimensional superstring. 

By the arguments given before it is a string theory in 10-dimensions. We 

deal with the following two-dimensional fields: As left moving coordinates 

we have 10 uncompactified bosonic fields X~(v + cr)(/z = 0 , . . .  ,9) and, 

in addition, 16 internal bosons X [ ( r  + (r)(I = 1 , . . . ,16)  which live on a 

16-dimensional torus. The right moving degrees of freedom consist of 10 

uncompactified bosons XR~(v- or)(# = 0 , . . . ,  9), and their two-dimensional 

fermionic superpartners CR~(v -- or). Finally, we have left- and right-moving 

reparametrization ghosts b, c and only right moving superconformal ghosts 

/3, 7. Xz~( ~" + cr) and X~(r  - or) have common center of mass coordinates 

and common space-time momentum which can take on continuous values. 

On the other hand, the momenta of the additional bosons XLZ(r + or) take 

only discrete values; they are vectors of a 16-dimensional lattice FI6: 

PL E F  16, p~=pieZi, I = 1 . . . 1 6 ,  Pi e Z. (10.40) 

z e i are the basis vectors of/-16 whose metric is given by 
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16 
gij ~ I x (10.41) = e ie j .  

I = l  

F 16 cannot be any lattice that contains the root lattice of some simply 

laced rank 16 group. One-loop modular invariance puts severe restrictions 

on it. We will limit ourselves to consider only the vacuum amplitude, i.e. 

the partition function. In the Hamiltonian formalism the partition function 

is given by 
X'(~, 7") --- Tr E~HLq HR , q = e 2~ri'r. (10.42) 

H L and H R are the left- and right-moving Hami|tonians in the light cone 

gauge: 
1 2  1 2  Hr = ~Pi + NL + ~p~ - 1 

(10.43) 
1 2 HNS(~) HR = ~;~ + NR + 

Pi (i = 1 . . .  8) are the transverse space-time momenta, PL the 16 internal 

left-moving momenta; N L contains the 8 external as well as the 16 inter- 

nal left-moving bosonic oscillators, where N R gets contribution only from 

the 8 right-moving external bosonic oscillators. Finally, H NS, H R are the 

Neveu-Schwarz and Kamond Harn{ltonians of the fermionic string and the 

right-moving normal ordering constant is included there. This leads to the 

following partition function: 

x(+,7-) ~ (ImT-) -4  1 ( 
[q(+)]24 \ 

X 

q~PL 
pL6F 16 

1 
[,q(7")] 12' [03 (7-)] 4 -  [04('/')] 4 --[02(7")14). 

(10.44) 

r/(~)-24r/(r) -8 is the bosonic oscillator contribution, the ( Imr)  -4 factor 

arises from the zero modes of the uncompactified transverse coordinates and 

q(r)-4x(O-functions) comes from the world-sheet fermions (cf. Chapter 9). 

The novel and most interesting part of this partition function is the lattice 

(or soliton) sum (from now on we suppress the bar over r) 

194 



1 2 
P ( r ) - -  E q~PL. (10.45) 

PLEF 16 

The summation is over all lattice vectors of F 16. From the known modular 

t ransformation properties of I m r  and 77(r ) under S and T we conclude that  

in order for X(~, v) to be modular invariant, P(r) must be invariant under 

the T transformation,  

P ( r  + 1) = P(r) (10.46) 

and must transform under S like 

So let us first check eq.(10.46): 

= rSP(v)  (10.47) 

1 2  " 2  
+ 11 = E q  p e 'pL- (10.48/ 

pLEF 16 

Invariance under T clearly demands that  p2 E 2Z, V pz E F 16 which means 

that  /-16 must be an even lattice. Note that  this already follows from 

eq.(lO.38) with pR = O. Since p2 = ~iPILp~ = ~ijPigijPj = ~ip2gii + 

2 ~-]i<j PigijPj (Pi,j E Z) we find that  for an even lattice the diagonal ele- 

ments of the metric gij must be even integers: gii E 2Z, V i = 1 , . . . ,  16. 

The more subtle part  is the transformation of P ( r )  under S. To study 

it we recall the Poisson resummation formula. Consider the function 

F(. )  = ~ e -~ra(p+*)2+27riy'(p+~e) (10.49) 
pEA 

where the sum runs over the points of an n-dimensional lattice and Re a > 0. 

and y are arbi trary vectors. Since 

F ( .  + p) = F( . )  (lO.5O) 

for p E A, we can expand it in a Fourier series 

F ( x ) =  ~ e27rix'qF*(q) 
qEA* 

(10.51) 
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where 

F*(q)- vo l (A )  ,-,it 
cell 

dn x e-27riq'= F(=). (lo.52) 

Inserting eq.(10.49), combining the sum over A and the integral over the 

unit cell to an integral over all of R n, we get, after doing the Gaussian 

integral, 
1 

F(z) = vol(A) oLn/2 ~ e-27riq'=e -~(y+q)2. (10.53) 
qEA* 

This is the key formula to derive the imphcations of modular invariance 

for P(v). Applying it to P ( - 1 / r )  we get 

I T 8 1 2 

P( -  )-- dvrd--~g ~ q~P. (10.54) 
pe(/~16) * 

Therefore, in order to satisfy eq.(10.47),/~16 must be a self-dual lattice, i.e. 

r 1 6  = ( r 1 6 )  * . (10 .55 )  

Then detg = 1 and vol(F) = vol(F*)= 1. 

In summary, modular invariance of the partition function implies that  

the internal 16-dimensional momentllm lattice /~16 must be an Euclidean 

even self-dual lattice. 

These lattices are very rare. We will study them move carefully in 

the next chapter. The result is that  in 16 dimensions there are only two 

Euclidean even self-dual lattices namely the direct product lattice FEs ®FEs , 
where FEs is the root lattice of E8, and FD16 which is the weight lattice of 

Spin (32)/Z2 which contains the root lattice of SO(32). The metric gij of 

FE8 is the Cartan matrix of E8: 
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g l j  = 

2 -1 

-I 2 -I 

-I 2 

-i 

One can check that detgij = 1. 

-1 

2 

-1 

-I 

2 -i 

-I 2 

-i 

-I 

- 1  

2 

- 1  
(lo.56) 

The construction of the weight lattice of 

Spin (32)/Z2 will be discussed in the next chapter. Both, the root lattice 

of E8 x E 8 and the weight lattice of Spin (32)/Z 2 contain 480 vectors of 

(length) 2 = 2 which are the roots of E 8 x E 8 and SO(32) respectively. 

Therefore, according to our previous discussion the dimension 496 gauge 

group of the heterotic string is either E8 x E 8 or SO(32). This is required 

by modular invariance. 

Let us investigate the spectrum of the heterotic string more carefully. 

First consider left-moving excitations. As usual, there is the tachyonic vac- 

uum of the bosollic string. At the massless level we have oscillator excita- 

tions &/1[0), ~/110). The former transform like 10-dimensional space-time 

vectors whereas the internal oscillator excitations correspond to the left- 

moving part of the Abelian U(1) 16 gauge boson. They build the Cartan 

subalgebra of E 8 x E 8 or SO(32). We also have the states in the soliton 

sector with non-trivial internal momenta PL. The states ]p2 = 2), N L = 0 

are massless, pr. is a (length) 2 = 2 root vector of E 8 x E 8 or SO(32) and 

generate the non-Abelian gauge bosons of these groups. 

The right-moving excitations are those of the 10-dimensional superstring 

- the spectrum is space-time supersymmetric. The NS tachyon I0)NS is pro- 

jected out by the GSO projection which was enforced by modular invariance. 

Therefore the lowest states are the 10-dimensional vector bil/2 lO)NS and the 

10-dimensional spinor IS a) (previously denoted by [a)). 
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Finally we take the tensor product of the left- and right-moving sectors 

to obtain the spectrum of the heterotic string. It is clear that there is no 

tachyon since the left-moving tachyonic vacuum does not satisfy the left- 

right level matching constraint. Due to the right-moving supersymmetry 

the spectrum is N = 1 supersymmetric in 10 dimensions. We have four 

kinds of massless states: 

(i) The states corresponding to the ten-dimensional graviton, antisym- 

metric tensor field and dilaton 

eLll0> ~ ~ ,  10)NS, (10.57) 

(fi) and their supersymmetric partners, the gravitino and dilatino 

,~11o> ~ IS~>R. (lO.58) 

(iii) In addition we have the gauge bosons of E 8 x E 8 or SO(32) 

~'_11o> ® b~_,_lO)Ns, 
2 (10.59) 

Ip~ = 2> ® b~_,_lO>.s 
2 

where in the first line we have the gauge bosons corresponding to 

the Cartan-Weyl subalgebra and in the second line the gauge bosons 

corresponding to the root vectors. 

(iv) Finally there are the 496 supersymmetric partners of the gauge bosons, 

the gauginos 

~fi, lo) ® IS~)rt, 

Ip~ = 2)® IS~)rt. 
(10.60) 

It is straightforward to work out the massive spectrum but we will not 

do it here. However, it is useful to remember that the number of (massive) 

states coming from the soliton sector is encoded in the lattice partition func- 

tion of the root and weight lattices of E 8 x E 8 and Spin(32)/Z2 respectively. 

To see this, let us calculate the partition functions 
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P = ~ eiTrr)~2 = E q ½ x̀2 (10.61) 

where the sum extends over all vectors in the E 8 and Spin(32)/Z2 weight 

lattices respectively. The 240 roots of E 8 are given by 5 

0,... + 1,0,...,+1,0...) 
(+½, +1 

" ' ' '  2) even number of " -  

and the weight vectors are of the form 

(10.62) 
" signs 

(nl,..., m), s 
.X = (na + 1 1 ~ ni = even integer. (10.63) 

2 , " "  nsq-  3) i=1 

To implement the condition on the ni we insert a factor ½(1 +e irr ~ hi). We 

then get 

niGZ "= niEZ 
8 8 

+ II E e~'("'+1)2" + I I E  e~("'+1)%~("'+½)} 
i=1 niEZ i=1 niEZ 

1 O~(r) 88(r) = + } 

(10.64) 

where we have used the definitions of the theta-functions given in Chapter 

9. The contribution of the last term is 8~(r) = 0. Expanding PEs in powers 

of q we find 

PEs(r) = 1 + 240q + 2160q 2 +6720q 3 + . . .  (10.65) 

It shows tha t  the E 8 root lattice has 240 points of (length) 2 = 2 correspond- 

ing to the roots, 2160 points of (length) 2 = 4 etc. 

For the Spin(32)/Z 2 case one derives in a similar way, using results from 

Chapter  11, that  

5properties of root and weight lattices will be discussed in detail in the next chapter. 
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1 16 0416 8216(r)] (10.66) PSpint32)/Z2 = 5[83 (r) + (v) + . 

With the help of the identity 84 = 84 +84 (cf. Chapter 9) we can show that  

PSpin(32)/Z2 = [PEs] 2 

= 1 + 480q + 61920q 2 + 1050240q 3 + . . .  
( o.67) 

It follows that  the E 8 × E 8 and the SO(32) heterotic string theories have 

the same number  of states at every mass level which are however differently 

organized under the internal gauge symmetries. So, even though the par- 

tition functions are identical, the theories are nevertheless different. The 

differences show up in correlation functions. 
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Chapter 11 

Conformal Field Theory II: Lattices and Kac-Moody 
Algebras 

In the previous chapter we have learned that massless vector bosons 

may arise from toroidal compactification of bosonic string coordinates, a 

feature which is not expected by any field theoretical argument. However, 

we omitted to prove that these massless vectors are really gauge bosons of a 

non-abelian gauge group G transforming in the adjoint representation. The 

necessary mathematical tool to do this is the theory of infinite dimensional 

(current) algebras, the so-called affine Kac-Moody algebras. They are the 

subject of this chapter. These algebras were first discussed by Kac [1] and 

Moody [2]. A collection of reprinted papers and more references on this 

subject can be found in [3]. 

11.1 K a c - M o o d y  a lgeb ra s  

A Kac-Moody algebra is the infinitesimal version of a certain infinite di- 

mensional Lie group ~, namely the group of mappings of the circle S 1 into 

a finite dimensional compact connected Lie group G. G is the so-called loop 

group of G. 

Represent S 1 as the unit circle in the complex plane 

S 1-- {z e C :  tz[-- 1} (11.1) 

and denote a map from S 1 into G by z --~ 7(z) 6 G. The group operation 

on G is defined by pointwise multiplication; i.e. given two maps 71,72 E G, 
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the product of 71 and 72 is 71 • 72 C G where 

= 71(z)72(z).  (11.2) 

The infinite dimensional algebra g0 of G can be obtained from the finite 

Oo(z)  = 

we can introduce generators Tn a, 

dimensional Lie algebra g of G, 

[T a, T b] -- i fabcTc 

where fabc are the structure constants of g by writing 

dim g 

7(z) = exp[-i  E TaOa(z)] • 
a = l  

On(Z) are dim g functions defined on the unit circle. 

functions into modes 
OO 

eg" " 
n ~ - - O O  

such that 

(11.3) 

(11.4) 

Expanding these 

(11.5) 

T2 = T a z  n (11.6) 

7(z) = exp[-i E Ta-nO~]" (11.7) 
12~a 

We see that  the n, O a s are an infinite set of parameters for g and the ~-n a an 

infinite number of generators of g satisfying the following algebra 

IT a ,  T b] = ifabCTCm+n (11.8) 

which follows from eqs.(ll.3) and (11.6). This is the (untwisted) affine Kac- 

Moody algebra 90, also called loop algebra. (We will not consider twisted 

Kac-Moody algebras.) Note that the T~ generate a subalgebra isomorphic 

to g. It corresponds to (ga(Z) = coast.. 

If the T a are Hermitian generators of G, 

T a t = T  a, (11.9) 
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then the Kac-Moody generators satisfy (z* = z -1 for Iz]- 1) 

(11.1o) 

A representation of g0 satisfying this hermiticity condition is called unitary. 

In Chapter  2 we have seen that  for the closed bosonic string (say) right 

movers are functions of ( r  - a) only and periodicity allows an expansion in 

Fourier modes e in( 'r-~z) .  This means that  the fields are defined on S 1. The 

Virasoro algebra v0 generates reparametrizations of S 1. The generators can 

be represented as 

Ln = --zn+lC3z  (11.11) 

where z = e i ( r -~)  E S 1. With the g0 being the algebra of the group of 

maps S 1 --~ G and v0 the algebra of Diff(S 1) it is clear tha t  they are not 

unrelated. In particular,  to every Kac-Moody algebra there is an associated 

Virasoro algebra. Using the explicit form for the generators eqs.(11.6) and 

(11.11) we easily find 

[Lm, Tan]=-nT~+m ; (11.12) 

i.e. 730 and t~0 form a semidirect sum Ao = v0 • g0. 

So far we have constructed the Kac-Moody algebra from the classical 

Lie algebra eq.( l l .3) .  When going to the quantum theory we have however 

to be careful. We saw in Chapter  3 tha t  the Virasoro algebra gets a central 

extension parametr ized by the central charge c. This possibility also arises 

in the case of the Kac-Moody algebra. Allowing a general central extension, 

it has the form 
[Tma, Tb I = i fabCTCm + n + d~nj  kJ , 

(11.13) 
ITS, kJ] = [h i, = 0 

where h i, (i = 1 , . . . , M )  are central elements. Then for G compact and 

simple one can show that  up to redefinitions of the generators by terms 

linear in the the k i the only possible choice for d~nik  i consistent with the 
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Jacobi identities is krrtsabSm+n . We can then define the untwisted affine 

Kac-Moody algebra ~ by the following commutation relations: 

[Ta, T b] .-abc,~c = z I l~n+n + krnsabSm+n. (11.14) 

The central element k is called the level of the Kac-Moody algebra. It is a 

real constant in each representation. In fact, when considering irreducible 

unitary representations of the Kac-Moody algebra, the values of k are not 

arbitrary but constrained to k >_ 0; for G # U(1) k E Z+. This will be 

shown below. From eq.(ll.14) we see that the Lie algebra g does not allow 

a non-trivial central extension. If G is compact but not simple we get a 

different k for each U(1) and each simple factor. 

The Kac-Moody algebra eq.(ll.14) is closely related to a two-dimen- 

sional current algebra. Consider the conserved chiral currents ]a ( z )  which 

carry the adjoint representation index of some Lie group. Since cO~.Ja(z) = 

0 we have, as in the case of the Virasoro algebra, an infinite number of 

conserved charges 
j a =  / dz  n a 

~ / z  J (z) (11.15) 

which satisfy the same algebra as the corresponding generators, namely an 

affine Kac-Moody algebra: 

~" ZI Jm+n q- mkt~ab~rn+n (11.16) 

and also 

[nm, J a] n a = -  Jm+n (11.17) 

reflecting the semidirect sum structure Jt = ~) C ~. Inverting eq.(ll.15) we 

get 

Ja(z) = E z - n - l d  ~ . (11.18) 
n 

Using the techniques of Chapter 4 we easily find that eq.(ll .I6) is equivalent 

to the following current operator algebra: 
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k6ab i/ab ¢ ]c(~) 
J : ( z ) j b ( w )  - (z - w) 2 + (z - w) + " "  (il.19) 

In this equation, the central charge appears as a so-called Schwinger term. 

In conformal field theory language eq.(11.17) means that the currents Ja(z) 
are primary fields with weight h = 1 of the Virasoro algebra (cf. eq.(4.35)). 

Indeed, eq.(11.17) is equivalent to the operator product 

Ja(~)  
T ( z ) ] a ( ~ )  - ( ;  - ~ 2  + 

We can now define primary fields of A by 

OwJa(w) 
+ . . .  (11.20) 

Z - - W  

h¢~(w) a¢~(~) 
T ( z ) ¢ i ( w ) -  ( z - - ~ ) 2  + - - - -  + ".. 

(11.21) 
Ja(z)¢i(w)- (Ta)iJCj(w) -F... 

Z--W 

where (Ta)! are representation matrices of g. Comparison with eq.(ll.19) 

gives that Ja(z) is not primary with respect to the combined algebra A. 

Indeed, in the notation of Chapter 4 we have Ja(z) = ,]alI(z ). 

There is an explicit construction of the Virasoro algebra in terms of the 

Kac-Moody generators. This is the so-called Sugawara construction [4]. For 

simplicity we will only consider the case when g is simple. Define the energy 

momentum tensor as 

o r  

1 
T(z) - 2k + C2 E :  Ja(z)Ja(z)" (11.22a) 

a 

1 "]~+~J-m- 
L n -  2 k + C 2 E "  a a . 

m 

(11.22b) 

where C2 is the quadratic Casimir of the adjoint representation defined by 

facd fbcd -- c2~ab. (11.23) 

Normal ordering in eq.(11.22) is with respect to the modes of Ja(z). It can 

be shown that T(z) satisfies a Virasoro algebra with central charge 
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2k dim G 
c - C2 + 2k " (11.24) 

Let us now specialize to simply laced groups G of rank n. Then C2 is given 

by the formula 

c2 = 2 (dimG 1) (11.25) 
- n 

It implies tha t  for level one Kac-Moody algebras, i.e. k = 1, the central 

charge of the corresponding Virasoro algebra is an integer, namely the rank 

n of G. This suggests that  the level one Kac-Moody currents of the simply 

laced group G can be constructed from n free bosonic fields. This construc- 

tion, known as the Frenkel-Kac-Segal construction, uses n bosonic fields 

"compactified" on the root lattice of the corresponding group and proves 

the appearance of non-Abelian gauge symmetries in the heterotic string 

theory introduced in Chapter 10. To present it, let us therefore recall some 

basic facts about  lattices and Lie algebras. 

11.2 L a t t i c e s  a n d  Lie a l g e b r a s  

A discussion of the theory of roots and weights in connection with Kac- 

Moody algebras is given in [5]. Reference [6] also provides some material 

presented in this section. 

A lattice A is defined as a set of points in a n-dimensional real vector 

space V: 
n 

A = { E  nieilni e Z}. (11.26) 
i=1 

The ei (i = 1 . . .  n) are n basis vectors of V. 1 We will only be interested in 

the cases where V is R n with Euclidean inner product  or RP,q (p + q = n) 

with Lorentzian inner product; i.e. for v, w being two lattice vectors we have 

1The notation differs from that of the previous chapter. We have redefined 

~ eqei ~ el. 
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~,.w = E~=I vXwX for the Euclidean case and v.w = F_,P=x vXw I x-',n vXw x 
~ Z - . X = p + l  

for the Lorentzian case. The matr ix 9 i j  = e i  " ej is the metric on A; it 

contains all information about the angles between the basis vectors and 

about their lengths. The volume of the unit cell which contains exactly one 

lattice point, vol(A), is also determined by gij" 

vol(A) = (11.27) 

The dual lattice A* is defined as 

A* = {w E V, w .v e Z,V,  E A}. (11.28) 

* of A* satisfy The basis vectors e i 

e i . e j  = 6 i j  (11.29) 

* *. e* which is the inverse of gij. The volume and the metric on A* is gij = ei "3 

of the unit  cell of A* is then given by 

vol(A*) = (vol(A)) -1.  (11.30) 

A lattice is called unimodular if it has one point per unit  volume, i.e. 

if vol(A) = 1; then also vol (A*) = 1. It is integral if v .w e Z, Vv,w fi A. 

Clearly A is integral if and only if A C A*. Furthermore an integral lattice 

is called even if all lattice vectors have even (length)2; it is called odd 

otherwise. Finally, A is self-dual if A = A*. A necessary and sufficient 

condition for A being self-dual is to be unimodular  and integral. 

If An is a sublattice of equal dimension of A, we can decompose A 

into cosets with respect to As. To do so,- choose a set of vectors r n  i ( i  - -  

2 , . . . , N s ) ,  such tha t  

mi E A, mi  q~ As , 

m i - m j  q~ As if  i # j .  

Then the lattice A can be written as sum over cosets 

(11.31) 

A =  A s @ ( m 2 +  A s ) @ . . . @ ( r n N ,  + A s ) .  (11.32) 
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This notat ion means tha t  every vector in A can be writ ten as rn  i "b v s ,  

v8 E As, i = 1 , . . . ,  Ns, if we define ml - 0. The vectors m i are called coset 

representatives. The volume of A can be expressed as 

vol(A) = ~---~vol(A~). (11.33) 

The lattices we are most interested in are the so-called Lie algebra lat- 

tices. To discuss them we need some basic facts about Lie algebras, which 

we will now review. We will especially concentrate on the properties of 

their root and weight lattices. This is most conveniently done in the so- 

called Cartan-Weyl  basis. Choose a maximal set of hermit ian commuting 

generators H i (i = 1 , . . . , n )  

[H i, H j] - 0 

where the dimension n of this subalgebra is called the rank of G. 

(11.34) 

The H i 

generate the Car tan  subalgebra. Given a choice of a Car tan subalgebra we 

can diagonalize the remaining generators in the sense that  they have definite 

eigenvalues with respect to the Hi: 

[ H  i , E ~] = a i E  ~ . (11.35) 

The real non-zero n-dimensional vector c~ is called a root and E a a step 

operator corresponding to a. Note tha t  from eq.(l l .35) it follows tha t  the 

E a are necessarily non-hermitian. Indeed, we find that  

E - ~  = (E~)  t , (11.36) 

i.e. if a is a root then so is - a .  A root is called positive if its first non-zero 

component is positive. The E a with a positive are called raising operators 

and lowering operators otherwise. If all roots have the same length, the 

group is called simply laced. We can then normalize the roots to a 2 = 2. 

In the following we will only consider simply laced groups. Some of the 

expressions given below will have to be modified for the general case. 
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To complete the Lie algebra we need to determine the commutat ion rela- 

tion between the step operators E a, E ~. The commutators are constrained 

by the Jacobi identities and the result can be summarized as follows: 

e(a, f l )E a+19 i f a + ~ i s a r o o t  

[Ea, E/9] : a .  H if a = -/3 (11.37) 

0 otherwise. 

The constants e(c~, fl), antisymmetric in c~ and D, can be arranged to be 4-1. 

With  each root we can associate a SU(2) subalgebra generated by E ~, E - a  

and ~ . H .  If we identify them with J+,  J_  and 2J3, we recognize the angular 

momentum algebra. It is well known that  for uni tary representations the 

eigenvalues of 2J  3 or c~ • H have to be integer. 

Taking arbi t rary  integer linear combinations of root vectors one gen- 

erates a n-dimensional Euclidean lattice, called root lattice A R. Since the 

number  of root pairs q-~ in general exceeds the rank n of G, it is convenient 

to select a set of roots a i  (i ---- 1 . . .  n)  which serve as a basis for A R. These 

are the so-ca/led simple roots. They are those positive roots which cannot 

be wri t ten as sum of two positive roots. The Caf tan  matrix,  defined by 

g i j  - -  c q  . e~j (11.38) 

is an integer n x n matrix; its diagonal elements are 2 and its off diagonal 

elements are - I  or O; i.e. the root lattice of any simply laced Lie algebra 

is an integral, even lattice. Therefore it is contained in its dual lattice A~. 

gij is the metric on A R. From a given Caf tan  matr ix  one can construct a 

basis of simple roots and from that  all roots. 

Let us look at the classification of simply laced Lie algebras. The first 

class is the Dn (n >_ 1) series 2 corresponding to the orthogonal groups 

SO(2n) with rank n. The root vectors have the following form: 

2Note that we also include the case n = 1 with D 1 ,-~ U(1). 
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ai  -- (=t=l, i l , 0 , . . .  ,0) + all permutations. (11.39) 

Counting all combinations of distributing two "±1" entries, one easily ver- 

ifies that there are 2(n 2 - n) root vectors. They build, together with the 

n Cartan subalgebra generators Hi, the 2n 2 - n generators of Dn in the 

Cartan-Weyl basis. The n simple roots of Dn are 

(1,-1,0n-2),(O,1,-1,0n-3),...,(On-2,1,-1),(On-2,1,1) (11.40) 

where 0 i denotes tile/-dimensional null vector. 

The next class of simply laced Lie algebras is the An series (n > 1) 

corresponding to SU(n + 1) with rank n and dimension n 2 + 2n. Let us 

take as an example ,4 2. The six roots of SU(3) have the form 

V 2), 

The two simple roots are a: and a2. 

(::.4:) 

Besides the Dn and An series there are the exceptional simply laced Lie 

algebras E6, E7 and E s of dimensions 78, 133 and 248 and rank 6,7 and 8 

respectively. The 72 roots of E 6 (in a suitably chosen basis) look like 

(±1, :El, 03; 0) + 36 permutations 

1 1 1 1 1 v ~  
( + ~ , ± ~ ,  ±~ ,  +~ ,  +~;  -5-) 

1 1 1 1 : ) 

and the root vectors of E7 have the form 

even number of minus signs 

odd number of minus signs 

(11.42) 
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(+1,4-1, 04; O) --[- 56 permutations 

(06; 4-v~) 

1 1 1 1 1 1 v/2 
, , , + 5 - )  (4- + 5  4-5; 

even number of minus signs 

in first six components 

(11.43) 

The roots of E 8 have a particularly simple form; they are given by the 112 

root vector of D 8 (see eq.(11.39)) and in addition to these the following 128 

eight-dimensional vectors: 

ai  -- (4- , 4 -g , . . . , : k  (11.44 / 

where the number of minus-signs is restricted to be even. 

So far we have only considered root lattices A R which are constructed 

from the adjoint representation of G. However, any Lie group G has in- 

finitely many irreducible representations which are characterized by their 

so-called weight vectors. Consider a finite dimensional irreducible represen- 

tation of G. The states which transform in a specific representation are 

denoted by [mz, D) where D is the dimension of the representation and I 

runs from 1 to D. These states are eigenstates of the Caftan subalgebra 

generators: 

H i Imp, D) = D). (11.451 

The n-dimensional vector rnx is called weight vector of [mz, D). The weight 

vectors characterize the representation. We can reach all states in a given 

representation by acting with lowering operators on the so-called highest 

weight state. Thus the weights in a given representation differ by vectors 

in the root lattice. For simply laced groups ai  • m E Z for all roots and 

weights. Also, if 3 • m E Z, Vm, then/3 EAR. 

Irreducible representations fall into different conjugacy classes. Two 

different representations are said to be in the same conjugacy class if the 
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difference between their weight vectors is a vector of the root lattice. Of 

course, all weights of a given representation belong to the same conjugacy 

class. Therefore, a particular conjugacy class k is specified by choosing 

a representative weight vector ink, e.g. the heighest weight of the lowest 

dimensional representation contained in this conjugacy class. 3 Then all 

vectors within the same conjugacy class are constructed by adding the whole 

root lattice to this representative. Since the root lattice is an integral lattice 

and also the scalar product between the roots and rn k are integer, it follows 

that the mutual inner product between all vectors of two conjugacy classes 

depends only on the scalar product of their representative vectors, i.e. on 

the conjugacy classes, modulo integers. 

All weights of all conjugacy classes including the (0) conjugacy class 

(the root lattice itself) form the weight lattice Aw. Our results above clearly 

imply 

AR D Aw, A R = A* (11.46) 

which entails that 

vol(aR) = (vol(Aw)) -1. (11.47) 

The decomposition of the weight lattice into conjugacy classes is then simply 

a coset decomposition of Aw with respect to A R and we can write 

Aw = AR @ (AR + m2) @.. .  @ (AR + m N  c) (11.48) 

where the m k (k = 2 , . . . ,  Nc) are the representative vectors of each non- 

trivial conjugacy class and Ne is the number of conjugacy classes which is 

3A highest weight state ]too,D) satisfies Ea]mo,D) -- 0 Vpositive a .  It means 

that  a + rn0 is not a weight vector for any positive root ~ .  The other  states in the 

same representat ion are obtained by acting with lowering operators on the highest 

weight state.  Any irreducible representat ion of g has a unique highest weight s tate  

- the other  weights have the proper ty  that  rn0 - rn  is a sum of positive roots. The 

highest weight of the adjoint representat ion is called highest root ~b with ~2 = 2. 
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finite for finite dimensional Lie algebras. The cosets form an abelian dis- 

rete group under addition, isomorphic to the center of G. The direct sum 

decomposition eq.(ll.48) attributes to each root Nc weights (including the 

root itself); it follows that (cf. eq.(ll.33)) 

vol(Aw) = ~1~ vol(AR) (11.49) 
lVc  

and with eq.(ll.47) 
1 

vol(Aw) = x/'~c ' (11.50) 

vol(AR) = V/~c. 

One can also consider so-called Lie algebra lattices, which are the direct 

sum of only a subset of all possible conjugacy classes. The choice of possible 

conjugacy classes is restricted; it must be closed under addition of all lattice 

vectors which in particular means that the root lattice is always present. 

The possible subsets of conjugacy classes are in one-to-one correspondence 

with the subgroups of the center of G. 

Since the volume of the unit cell of A R is v/-~c, the Lie algebra lattice is 

unimodular if it contains ~ e  conjugacy classes (cf. eq.(ll.33) with A8 -- 

AR). This means that Arc must be the square of an integer. Furthermore, 

the Lie algebra lattice will be self-dual if all mutual scalar products between 

the different conjugacy classes are integer. 

Let us illustrate this by considering specific simply laced Lie algebras. 

The Dn algebras have four inequivalent conjugacy classes. The already 

discussed (0) conjugacy class, the root lattice, contains vectors of the form 

n 

( k l . . .  ks), ki e z ,  ki = 0 rood 2. (11.51) 
i=1 

Next, the vector conjugacy class, denoted by (V) contains as smallest rep- 

resentation the vector representation of dimension 2n. Its weight vectors 

a r e  
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m = (+1, 0 , . . . ,  0) + all permutations. (11.52) 

A representative vector of the (V) conjugacy class can be choosen to be 

(1, 0 n - l )  which implies that all vectors of the V conjugacy class have the 

form 
n 

(kl ...kn), ki E Z, E = 1 mod 2. (11.53) 
i=1 

It also follows that the (length) 2 of any vector in the V conjugacy class is 

1 rood 2. The spinor conjugacy class, denoted by S, has as smallest repre- 

sentation the spinor representation of dimension 2 n-1. The corresponding 

weight vectors are 

1 1  
m = (4- ,+~ ,  ... ,4- , even number of " - "  signs. (11.54) 

Thus, a representative vector of the S conjugacy class can be choosen to 

be Finally, the C conjugacy class possesses as lowest dimensional 

representation the anti-spinor representation with weights 

m = (4- ,4 -~ , . . . ,4 -  ), odd number of " - "  signs. (11.55) 

1 n - I  Its representative vector is (-21-, (2) ). The (length) 2 of all vectors in 

n mod 2. the S and C conjugacy classes is 

The center of Dn is Z4 for n odd and Z2 x Z2 for n even. It has the same 

number of elements as there are conjugacy classes, namely four. The addi- 

tion rules of the conjugacy classes (which correspond to the tensor products 

of the representations) are determined by the addition rules of the different 

representative vectors and are summarized in table 11.1. The mutual scalar 

products (defined modulo 1) between the four conjugacy classes are shown 

in table 11.2. 

From the above discussion it is clear that the Dn Lie algebra lattices are 

unimodular if they contain in addition to the root lattice one further con- 

jugacy class. Inspection of tables 11.1 and 11.2 shows that the (0) and (V) 

conjugacy classes of Dn together form an odd self-dual lattice for any value 
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Table 11.1: Addition rules for Dn conjugacy classes 

(o) 
(v) 
(s) 
(c) 

n even 

(0) ( v ) ( s )  (c) 
(0) ( v ) ( s ) ( c )  (0) 
v) (0) ( ¢ ) ( s )  (v) 
:s) (c) ( 0 ) ( v )  (s) 
(c) ( s ) ( v )  (0) (c) 

rt odd 

(0) ( v ) ( s ) ( c )  
(0) ( v ) ( s )  (c) 
(v) (0) ( c ) ( s )  
(s) ( c ) ( v ) ( 0 )  
(c) (s) ( 0 ) ( v )  

Table 11.2: Multiplication rules (mod 1) for Dn conjugacy classes 

(o) 
(v) 
(s) 
(c) 

(o) (v) (s) (c) 
0 0 0 0 

1 1 0 0 ~ 

0 1 n/4 (n -- 2)/4 

0 1 ( n -  2)/4 n/4 

of n. This lattice is identical to the n-dimensional cubic lattice Z n. For 

even n, the lattice with (0) and either (S) or (C) conjugacy class is also 

a unimodular  Lie algebra lattice. It is the weight lattice of Spin(2n)/Z2 .4 

Furthermore, we obtain an odd self-dual lattice of this type for n = 4 mod 

8 and an even self-dual lattice if n = 0 mod 8. 

The An weight lattice consists of n + 1 conjugacy classes denoted by 

(p) (p = 0 , . . .  ,n)  where the (0) conjugacy class corresponds again to the 

root lattice. The center of An is Zn+l. The smallest representations in each 

conjugacy class are the symmetric rank p tensors. The addition rules of the 

conjugacy classes are very simple 

4Spin(2n), n even, is simply connected and has center Z2 × Z2. If we divide by the 

diagonal Z2 we get SO(2n) with only (0) and (V) conjugacy classes. If we divide by 

one of the Z2 we are left with the (0) and one of the spinor conjugacy classes. 
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(p) + (q) = (p + q) (11.56) 

where (p + q) is defined modulo n + 1. The mutual scalar products are 

(p).(q)=p(n+ l -q)  m o d l ,  p<q. (11.57) 
n + l  

Using this one can verify that the Lie algebra lattices Ak2_ 1 with conjugacy 

classes (0), (k), (2k),... ((k- 1)k) are odd self-dual for k even and even self- 

dual for k odd. 

The E 6 weight lattice contains three conjugacy classes (0), (1) and (i) 

corresponding to the singlet, the 27 and the ~ representations of E 6. The 

addition rules of these conjugacy classes are the same as for A2, the (length) 2 

of the weights of the 27, 2~. is 4/3 and the mutual  scalar product between 

(1) and ( i ) i s  2/3 mod 1. 

E 7 has two conjugacy classes, (0) and (1) where the minimal  represen- 

tation of the (1) is the 56 with weights of (length) 2 3 

Finally E8 has only one, namely the (0) conjugacy class. Therefore, the 

weight lattice of E 8 is identical to its root lattice which implies that  it is 

even serf-dual. Recall that the root vectors of E 8 are of the form 

(=kl, =kl, 06 + permutations 
(11.58) 

"- 1 1 +½) number of " " signs. ( : k  ~ ,  "4- 2 '  " " " ' e v e n  - -  

We recognize that  the E 8 root lattice is identical to the D 8 lattice with (0) 

and (S) conjugacy classes and one can also show that (up to rotations) it 

is the A s Lie algebra lattice with (0), (3) and (6) conjugacy classes. On 

the other hand, if a Lie algebra lattice contains besides the roots additional 

weight vectors of (length) 2 -- 2, then these lattice vectors are roots of a 

larger Lie algebra with fewer conjugacy classes. E.g. the adjoint of E 8 

decomposes into SO(16) as 

248 = 120 + 128 (11.59) 
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where the 128 is the spinor representation and the !20 the adjoint repre- 

sentation of SO(16). 

Now consider direct products of Lie algebra lattices like Dn ® Din, 

An ® Am,Dn ® Am etc. These contain of course the root system of the 

corresponding semi-simple Lie algebras. Furthermore, the Lie algebra lattice 

is specified by the so-called glue vectors which generate upon addition all 

other conjugacy classes. Take e.g. D 2 ® D 3 with glue vector (V,S). Then 

we obtain, according table 11.1, a Lie algebra lattice with the following 

conjugacy classes: (0,0), (V,S), (0,V), (V,C). Since D2 ® D3 contains 16 

conjugacy classes, the above specified Lie algebra lattice is unimodular. It 

is however not self-dual. A different example is E6 ® A2 with glue vector 

(1,1). The conjugacy classes are now (0,0), (1,1) and (i,2). We now get 

additional (length) 2 = 2 vectors, and in fact this lattice is again the even 

self-dual E8 root lattice which can be also seen by decomposition of E 8 to 

E6 x SU(3): 

248 = (78,1) + (1,8) + (27,3_) + (2___., 3-). (11.60) 

Let us now come to the classification of Euclidean even self-dual lattices. 

They only exist in dimensions which are a multiple of 8. In eight dimensions 

the only Euclidean even self-dual lattice is the root lattice of E 8. In 16 

dimensions there are two even self-dual lattices, namely the root lattice of 

E8 ® E8 and the Lie algebra lattice of D16 with (0) and (S) conjugacy 

classes, called Spin(32)/Z2. These two lattices arise in the construction of 

the 10-dimensional heterotic string theory. They are the only ones satisfying 

the constraint of one-loop modular invariance, as discussed at the end of 

Chapter 10. 

In 24 dimensions there are 24 even self-dual lattices called Niemeier 

lattices. 23 of them are Lie algebra lattices of semi-simple Lie groups. The 

following table, taken from ref. [7], summarizes them together with the 

relevant glue vectors. 
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Table 11.3: The 23 Euclidean self-dual semi-simple Lie algebra lattices in 24 dimensions. 
(Conjugacy classes in square brackets should be cyclically permuted) 

Lie algebra glue vector 

D24 
DlsEs 

A24 
0~2 

A17E7 
DloE 2 

AlsD9 
083 
A~2 

AllDTE6 

A2Ds 

D', 

2 2 ATD5 

A4D4 

A~ ~ 
A~ 4 

(s) 
(s,0) 

(0,0,0) 
(5) 

(s ,v) , (v ,s)  
(3,1) 

(s, l, 0), (c, 0,1) 
(2,s) 

(s, v, v), (v, s, v), (v, v, s) 
(1,~) 

(1,S,1) 
(1, O, 1, i ) ,  (1, i ,  O, 1), (1,1, i ,  O) 

(2, 4, 0), (5, 0, S), (0, 5, C) 
even permutations o£ (0, S, V, C) 

(1,1,4), (4, 1, 1), (1,4, 1) 
(1,1, S,V), (1, 7,V, S) 

(1, 2,1, 6), (1,6,2,1),  (1,1, 6, 2) 
(2, [0, 2, 4], 0), (3, 3, O, O, S), (3, O, 3, O,V), (3, O, 0,3, C) 

(s, s, s, s, s, s), (o, [o, v, c, c, v]) 
(1, [0, 1,4, 4, 1]) 

(2,[2,0,0, 1,0, 1, 1]) 

(2, [1, t, 2, 1, 1, 1,2, 2, 2, 1,2]) 
(1, [0, O, O, O, O, 1, O, 1, O, O, 1,1, O, O, 1, i ,  O, 1, O, 1,1, 1, 1]) 

The  24th even self-dual latt ice is the  so-called Leech lattice.  It contains 

no vectors of ( length)  2 -- 2. Its shortest  vectors have (length) 2 - 4. 

Above 24 dimensions  the n u m b e r  of even self-dual latt ices increases 

rapidly and  most  of t h e m  are not  known explicitly. 
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So far we have considered only Euclidean Lie algebra lattices. However 

there exis two types of Lorentzian "Lie algebra" lattices. First consider 

Fn,m = FnL ® FrnR in R nL,mR where FnL and FmR are semi-simple Lie 

algebra lattices of dimensions n L and n R respectively. Again Fn,m is com- 

pletely specified by the knowledge of the relevant glue vectors. The second 

type of Lorentzian Lie algebra lattice is obtained if the sign of the signature 

of the metric changes within a given Lie algebra lattice. Dn,m with (0) and 

(S) conjugacy classes is a suitable example. Actually, Lorentzian lattices of 

the second type are always also of the first type. For example, Dn,m with 0 

and S conjugacy classes is identical to DnL ® DmR with (0,0), (V,V), (S,S) 

and (C,C) conjugacy classes. 

Lorentzian even self-dual lattices Fn,m exist for n - m = 0 mod 8. They 

are unique up to Lorentz transformations. For n = m + 8p they are Lorentz 

transformations of (Es)P ® Dm,m where Dm,m is defined by the (0) and (S) 

conjugacy classes. 

11.3 F r e n k e l - K a c - S e g a l  c o n s t r u c t i o n  

Let us now return to our original problem namely to provide an operator 

construction of the level one Kac-Moody algebra from free chirM boson fields 

moving on a n-dimensional torus. This construction is due to Frenkel and 

Kac [8] and Segal [9]. An easily accessible discussion can be found in [5]. 

The level k Kac-Moody algebra in the Cartan-Weyl basis for a simply 

laced group G reads: 

H,i i a [ = a 

(11.61) 
e(a, ~)Em~ % if a- /3  = - 1  

i f a  ./3 = - 2  

if(~-/3 E 0 0 
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with hermitici ty properties 

Hit  = H i E~nt -a (11.62) 

Note tha t  a •/3 = - 1  implies that  a +/3 is a root and a •/3 = - 2  that  

a +/3 = 0. Let us now try to construct conformal fields Hi(z) and Ea(z) 
from free bosons Xi(z), (i = 1 , . . . ,  rank G) with mode expansion 

X i (z)  =q~- ip~ln~ +i E 1 4  ~-'~ (11.63) 
riCO 

and two-point function 

(X~(z)XJ(w)) = -6q ln(z - ~ ) .  (11.64) 

(Cf. Chapter  4.) The moments of Hi(z) and EC~(z) are the Kac-Moody 

generators H i ,  Er~ (cf. eq.(l l .15)):  

C d z  m o~ E.~ : 2-~z E ( 4 ,  
0 

H/m-- /C0 dz m i ~ / z  H (z). 

(11.6.5) 

Consider the conformal field 

$"(z)  =:ei"'x(~) : (11.66) 

where a is a root vector of G with (length) 2 = 2. This implies that  F,a(z) 
has conformal dimension h = 1. We will now show that  Ea(z) is already 

almost the desired field EC~(z). The operator product expansion of Ea(z) 
and F,a(w) has the form (see eq.(4.89b): 

k , ( z ) k # ( w )  = (z - w)~"#~?~+#(~)+ 

+ (z - ~)~, . /3+1. i a x ( ~ ) ~ , + # ( ~ )  + . . . .  
(11.67) 

Since a •/3 is an integer one derives tha t  
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/~'(~.)J(w) = ( -1p~Z(w)$~(z ) .  (11.68) 

This implies that with the contour integration trick of Chapter 4 we can 

only calculate/~n ~ /~m - ( -  1) a'/3 /~m E~. TM We get 

E~mEn~ - ( -  1)~'~E~/~r~ 

- -{/c d z t  d~ 
o 27ri o 27ri 

Izl>lwt 

- -  - fCJ'0 d z  d w  - 

i~,t>Jzl 

=~o-- 
dw dz 
2~i ~c,~, K~i (z - ~)'~'~ zmw"k~+~ (~) 

× [1 + i(z - w)<,. o x ( ~ ) + . . . ]  (11.69) 

" "  r r l . - I -  n 

-- m 6 m + n  + i a  • i dw m+n co ~-~;w Ox(w) 
0 

a .  D = - I  

a .  ~ = - 2  

otherwise 

Comparing this with eq.(11.61) we recognize that, the unwanted factor 

(-1)  a'/3 and the structure constants e(c~,/3) aside, we have reached our 

goal if we identify H i ( z )  with the derivative of the free bosons X i ( z )  • 

Hi(z) = i a X i ( z ) .  (11.70) 

This is in fact the correct identification; OXi ( z )  are conformal fields of 

dimension one and are the [U(1)]n Cartan-subalgebra currents. They satisfy 

the operator algebra 

aX~(z)axJ(w) = _ 6~J 
(z - ~ )2  + " "  

(11.71) 

which immediately leads to the correct commutator eq.(ll.61) between H / 

and H j .  We can also check that, using 

~(~)E'~(~') - (~-  w) #'~(w) + ' ' ' '  (11.72) 
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the correct algebra between the H/m and/~n a is obtained. Finally, we have to 

compensate the factor ( -1 )  a '~ in eq.(11.69). This is done by introducing 

so-called cocycle factors (also called Klein factors). We define EC~(z) as: 

E (z) (11.73) 

The cocycles ca have to satisfy: 

ca"  cD = (-1)a'/3c~ "cc~ 
(11.74) 

c a  = 

They can be explicitly constructed from the boson zero modes. We omit to 

present this construction. 

In conclusion, the level one Kac-Moody algebra of a simply laced group 

G with rank n possesses an explicit operator construction from n free 

bosonic fields Xi(z): 

Him=It dz m i -  - Hi(z) ioXi(z) 
o ~ i z  g ( z ) ,  = , 

(11.75) 
A.,. :eia'X(z) : . 

J L/ 
0 

i a The generators H i, E 0 obviously form a finite dimensional subalgebra iso- 

morphic to the Lie algebra g of eq.(11.37). In this case the Caftan sub- 

algebra generators H~ are simply given by the momentum operators pi in 

eq.(ll.63). The non-commuting E~'s are characterized by the momentum 

eigenvalues which are the roots a of the Lie algebra. It means that the al- 

lowed momentum eigenvalues of the bosons Xi(z) are quantized, or, equiv- 

alently, the bosons Xi(z) live on a (right-moving) n-dimensional torus. 

Now we can also give an explicit construction of the vertex operators 

of the gauge boson states which results from the compactification of the 

bosonic coordinates. The vertex operators of the Caftan subalgebra [U(1)] n 

gauge bosons are just the currents OXi(z). The corresponding asymptotic 

states are given by 
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/C dz i aXi(z)]O } = c~[llO > 
li> = 2~--i z 

0 

(11.76) 

which is nothing but  an internal oscillator excitation in agreement with our 

considerations in Chapter  10. 

The vertex operators of the non-Abelian gauge bosons are again given 

by the corresponding currents EC'(z) = Co~ : e i ° ~ ' X ( z ) :  . Since a2 = 2 this 
o t  2 

vertex operator has conformal dimension h = -2- = 1 as required for a 

physical state. The gauge boson state corresponding to the soliton vacuum 

has the form 

C dz 1 eic~.X.(z ) 
Is> = - - -ca :21r i  z : I0> (11.77)  

o 

This state carries quantized internal momentum corresponding to the roots 

of G. It is a winding state on the maximal torus of G defined by R / A  R. 
The allowed quantized momenta  of the Xi(z )  are however not restricted to 

lie in the root lattice of G but  can a priori be any weight vector. 

consider vertex operators 

V (z)=cA . jA.x( , ) .  

So we 

(n.78) 

where the A's are weight vectors of some (irreducible) representation _R of 

G and c A is again a cocycle factor. Then this operator creates states which 

transform under the representation R. The operator product algebra is 

= ( z  - ) + ... (11.79) 

The full operator algebra is completely determined by the addition rules 

of the different conjugacy classes. The requirement for a closed operator 

algebra implies tha t  the quantized momenta  A are vectors of a Lie algebra 

lattice of G. Additional requirements from string theory, like locality and 

modular invariance, imply that  the lattice is integral and self-dual. Thi~ 

will be discussed further in these lectures. 

224 



11.4  F e r m i o n i c  c o n s t r u c t i o n  o f  t h e  c u r r e n t  a l g e b r a  - 

B o s o n i z a t i o n  

In the previous section we presented the bosonic construction of tile level one 

Kac-Moody algebra of a simpiy laced group G of rank n. It was motivated 

by the fact tha t  both n free bosons and also the level one Kac-Moody algebra 

provide a Virasoro algebra with central charge c = n. On the other hand, 

a two-dimensional "real" chiral (Majorana-Weyl) fermion corresponds to a 

1 Thus we expect that  one can realize conformal field theory with c = 3" 

the level one Kac-Moody algebra by 2n fermions. Furthermore, we want 

to establish tha t  the conformal field theory of 2n fermions with specific 

boundary conditions is equivalent to a conformal field theory of n bosons 

compactified on a torus. The quantum equivalence between fermions and 

bosons in two dimensions was discovered by Coleman [10] and Mandelstam 

[11]. 
Consider a system of 2n two-dimensional real fermions el(z) (i = 

1 , . . . ,  2n) all having either periodic or antiperiodic boundary conditions 

and transforming as a vector of SO(2n). The operator products are 

= -  - -  + . . .  (11.8o) 
Z - - W  

The fields ¢i(z)  transform as a vector of SO(2n). We can then build the 

fermion bilinears 

1 cj (11.81) Ja(z) = ~ :¢i(z)  T~. (z):, a = 1, . . . ,2n  2 -  n 

where the antisymmetric 2n x 2n matrices Ti~ are the generators of SO(2n) 
in the fundamental  representation. An explicit representation of the SO(2n) 

k l and the generators in the vector representation is (Tkl)i j = gki6 } - ~ j 6  i 
currents become Ykl(z) =: ¢~¢l(z) ' .  Using eq.(l l .$0) it is not difficult 

to show that  the fermionic currents Ja(z) in eq.( l l .81) obey the level one 

Kac-Moody algebra of Dn ~ SO(2n) as given in eq.(11.19). 
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This suggests tha t  the bihnears of 2n free fermions are identical to the 

currents eq.(11.75) constructed from n free bosons with momentum vectors 

being root vectors of Dn. This is basically the s tatement  of bosonization. 

It means tha t  the conformal field theories of n free bosons and 2n free 

fermions are equivalent in the sense that  the conformal properties of their 

operators and all correlation functions are identical. However, this is only 

true if the bosons are compactified on a special torus. E.g. a single boson 

is only equivalent to two free fermions if the radius of the circle the boson 

is compactified on takes special values. 

Let us work out the bosonization prescription in more detail. For this 

purpose it is useful to convert the real basis for the fermions ¢i to a complex 

basis. Define 

gz+i(z ) = __~(¢2i-1 :t= i¢2i ) (z) ,  i - -  1,.. .  ,n (11.82) 

The Caf tan  subalgebra currents of Dn are then given by 

(11.83) 

and the non-commuting Dn currents are 

J+i,±J(z) =:~P+i(z)~P+J(z): (i < j). (11.84) 

Bosonization then consists of identifying Ji,-i(z) with the derivative of the 

bosons Xi(z) 

iox (z) (11.85) 

and the non-commuting currents with the operators EC'(z) 

:g/+i(z)~+J(z):--c+i,±j :ei(±xi+xi)(z): (i < j). (11.86) 

We recognize tha t  the corresponding root vector of Dn is given by ~ --- 

i e  i 4" ej.  
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One can also give a bosonic representation of the fermion ~i(z) itself. 

Since the fermions transform as a vector of Dn they are bosonized according 

to 

~ : i : i ( z )  = c + i  " e + i x ' ( z )  " (11.87) 

where the quantized bosonic momentum is now a vector weight of Dr, " 
:k 2 

A - -  :J=e i .  This gives the correct conformal dimension h -- -2- -- ½ for the 

fermions ~+i(z). 

As already discussed in Chapter 8, the Hilbert space of the fermionic 

theory splits into two sectors, namely the NS and P~ sector. In the NS 

sector, the fermions have antiperiodic boundary conditions on the cylinder 

which means tha t  they are periodic on the complex plane. For R states 

the situation is reversed. This change of boundary conditions is due to the 

Jacobian factor in eq.(4.10) for h = ½. 

An states in the NS sector are (even or odd rank) tensors of SO(2n). 

Therefore, in bosonic language, the corresponding vertex operators are of 

the form 

= • ( 1 1 . 8 8 )  

where ~ is either in the (0) or (V) conjugacy class of Dn. The currents 

eq.( l l .86) or the fermions eq.(11.87) are of this type. Since the mutual  

scalar products  between the (0) and (V) conjugacy classes are integer (see 

table 11.2), the operator algebra eq.(11.79) in the NS sector is local, i.e. 

contains no branch cuts. 

On the other hand, states in the R sector are build from the vacua 

IS a) (ISa))  which transform as spinors (anti-spinors) of Dn. Thus the 

vertex operators in the R sector are of the form eq.(11.88) but now with 

), being a weight either in the (S) or (C) conjugacy class of Dr,. We can 

also give an explicit construction for the spinorial vacuum IS a) (IS a)) .  It 

is created by an operator eq.( l l .88) with ~a (~a) being an (anti) spinor 
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weight of Dn as displayed in eqs.(11.54,55). This operator has conformal 

dimension h A2 n 
- - 2 - - 8 "  

Now, inspection of table 11.2 shows that the operator algebra eq.(11.79) 

in the R sector is non-local. Furthermore, states in the NS sector corre- 

sponding to the (V) conjugacy class of Dn are non-local with respect to the 

R sector. The corresponding operator algebra contains branch cuts. 

In conclusion, it is evident that using the techniques of bosonization the 

vertex operators of the fermionic conformal field theory become extremely 

simple. This is of great help in string theory as we will discuss in more 

detail later. 

11.5 U n i t a r y  r e p r e s e n t a t i o n s  and  c h a r a c t e r s  of  K a c - M o o d y  
a lgeb ras  

Let us now return to the discussion at the beginning of this chapter about 

the representations of the combined chiral algebra A = ~) ~ g. Following 

Chapter 4 we define primary or highest weight states of A by 

I¢i) = ¢i(0)10) (11.89) 

where i is a representation index of G and ¢i(z) is primary according to 

eq.(11.21). The vacuum is SL(2, C) and G invariant. The highest weight 

states satisfy 

L n l ¢ i ) - 0 ,  n > 0 ,  

J¢~1¢i) = 0, n > 0, 
L0l¢d = hi]¢i>, (11.90) 

J~l¢i) = (Ta)iJlcj). 
Alternatively, one could also write the highest weight condition in terms 

of the modes of Hi(z) and EC'(z). To each primary field there exists an 

infinite number of descendant fields of the form 
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L-k1 ""L-kmJa--lI 1 ' J-~?,l¢i), ki,zi > 0. (11.91) 

The conformal dimensions of the descendant states are hi--F~,,i= lrn k'i-F)-~i= In  li" 

We denote the totali ty of fields in a given highest weight representation by 

[¢i]A. The [¢i]A are also called current algebra families. 

The conformal dimension of the primary field is given by 

h =  C~ 
C2 + 2k (11.92) 

where Cff is the second Casimir of the representation R under which [¢) 

transforms: 

(Ta)i j (Ta)j k = c2R6ki . (11.93) 

Eq.( l l .92)  is easily derived using the explicit expression for L0 given in 

eq.(11.22b). 
Let us now determine the restrictions on k following from unitarity. To 

do this consider the SU(2) subalgebra of ~ generated by E~ a ,  E a_, and 

(k - a .  H0) where a is any root. Again, if we identify these generators with 

J+, J_ and 2J3 we have the angular momentum algebra and know that  

unitari ty requires that  the eigenvalues of (k - a • H0) have to be integer. 

Acting on a pr imary s ta te  Im) with weight m we find k - a .  m E Z or, since 

a - m E Z  

k e Z. (11.94) 

Since I,,,) is primary, E2?I,,,) = o and 

E C I ~  - - - .  - - - -  • II -,I,,,>112 ("IE - 'ZEll ' ') (k - ,,,)111,,,)II 2. (11.95) 

Positivity of the Hilbert space then gives k >_ c~. m. The right hand side of 

this inequality is maximized if we chose a to be the highest root ¢ and m 

to be the highest weight m0 of the given representation. We then have 

k > ¢ 'mo .  (11.96) 
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Clearly, for a given k only a finite number of highest weights satisfies this 

criterion. 5 For k -= 1 they are those belonging to the lowest dimensional 

representation in each conjugacy class. So, in spite of the fact that  we are 

considering conformal field theories with c larger than one, the combined 

Kac-Moody and Virasoro algebra has only a finite number of primary fields 

or current algebra families. Therefore, we call them also rational conformal 

field theories. Of course, the irreducible representations of the combined 

algebra are highly reducible under the Virasoro algebra. A current algebra 

family contains an infinite number of conformal fields which all transform 

under some representation of G. On the other hand, any current algebra 

family is generated from a specific lowest dimensional representation; states 

in all other representations are obtained by acting with the E~ n. 

As usual, the operator product algebra between the primary fields is 

determined by the conformal dimensions and the fusion rules among the 

fields: 

x Cj = (11.97) 

For arbitrary level h the fusion coefficients Nij  I are quite difficult to deter- 

mine. Of course, the fusion rules obey the decomposition rules of the tensor 

products between two irreducible representations. Therefore, the Nij  l are 

necesssarily zero if the corresponding Clebsch-Gordon coefficients vanish. 

However, the converse is not true which makes a systematic discussion un- 

feasable. 

For this reason we will concentrate on the simplest case k = 1. We 

have already seen that  one can explicitly construct the level one currents 

and also the states transforming under a specific representation by n free 

bosons compactified on the weight lattice of G. Now, eq.(11.96) which 

5The corresponding highest weight representations are also called integrable repre- 

sentations. 

230 



provides the number of current algebra families is satisfied only for the 

lowest dimensional representation in each conjugacy class of G. Therefore, 

the number of primary fields is identical to the number of conjugacy classes. 

The highest weight state has the form: 

i¢ i )=/C dz ~ :eip~,.x(z) o 2~i -  : I0). (11.98) 

A i is the highest weight vector of the lowest representation in the i th con- 

jugacy class. The fusion rules eq.(ll.97) are simply determined by the ad- 

dition rules for the different conjugacy classes resp. highest weight vectors. 

All non-vanishing c o e f f i c i e n t s  Nij I are one. 

Let us finally discuss the generalized characters of ~4. Recall that the 

characters are defined by 

Chi (r) = Tr¢iq L°-c/24 (11.99) 

where the trace is over all states of the current algebra family ¢i. This 

definition holds for all k. Again, for k = 1 these characters have a rather 

simple form. Since the L0 eigenvalue of the field ¢(z) = e iX 'X( z )  is given 
A2 by h = 2- , the level one characters are 

Chi ( r ) -  1 E eiTrTX2-- I pi(r). (11.100) 

The sum Pi( r )  is over all lattice vectors within the conjugacy class (i). The 

factor [q(7-)]-n, where n is the rank of G, takes into account the contribution 

of the L_k'S and q-C/24 (c = n). 

For the Dn algebras at level one we can give a closed expression for 

the lattice sums. From the explicit expressions for the simple roots and 

the representative weights, one can construct all weights in each of the four 

conjugacy classes. One then finds that the lattice sums corresponding to 

the 0,V,S,C conjugacy classes of Dn are given by: 
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Po(~) = 

P~(~)  = 

Ps(~) = 

P ¢ ( ~ )  = 

1_( 
2 [83(01z')]n'+-[O4(01r)]n } 

~{ [83 (O[V)]n--[04(O[7")] n } 

1 {[02(O[~.)],~+i,~[Oz (0 [~_)], ~ } 
(11.1o~) 

The P-functions were defined in Chapter 9. It is illustrative to compare 

these expressions with the partition functions of the fermionic string theory 

(cf. Chapter 9). Again, the equivalence between n bosons compactified on 

a Dn lattice and 2n periodic resp. antiperiodic fermions becomes mani- 

fest. Explicitly we obtain the following identities between the bosonic and 

fermionic partition functions 6 

x, ,P( , - )  = ( 0 n ( c h s ( ,  -) - c h o ( , - ) )  

x,.A(',-) = c h s ( ~ )  + C h c ( ~ )  
(11.102) 

x.,,A(,-) = Cho(,-) + Chv(,-) 

X~p(r) = C h o ( ' r )  - Chv(r )  

With the help of eq.(11.101) the partition function for the SO(32) string, 

given at the end of the previous chapter, follows immediately. 

Similarly, one can also express the level one characters of E6, E 7 and 

E 8 by theta functions; this requires again the explicit forms of the simple 

roots and the representative weights. For E s they have been given in this 

chapter. For E6 and E7 we refer to the literature. One then finds for the 

characters 

6These identities remain also true for higher genus partitition functions 
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p c=~ 1 { } (~o~o - ,,o/~-~ ~(°'~-~[~¢°'~/] ~+ ~'¢°'~~['4~°'~~] ~ + '~ / °~~[~¢° '~~]  ~ 

~-~/~°"/'](o13,)[e,(ol~)] - -  c V L z / =  

5} 

~(.) {e3(o12.)[e,(o,~-)]' + e2(o12.) ([e,(ol.)]'- [,,(oI.)]') } 

' (  } 
(11.1o3) 

Let us conclude this chapter by discussing some of the modular properties 

of the level one I<ac-Moody characters. This is important because they 

appear in string theory as one-loop partition functions of n bosonic coordi- 

nates compactified on a specific Lie algebra lattice. The Hilbert space then 

contains, in general, several current algebra families (or conjugacy classes) 

including the identity family which of course corresponds to the (0) conju- 

gacy class. 

The level one characters of the Kac-Moody algebra ~ build a finite 

dimensional representation of the modular  group, i.e. the characters trans- 

form under under the generators of the modular group T (~" --~ ~- + 1) and 

S (v --~ _ 1 )  like (i = 1 , . . .  ,Nc = number of conjugacy classes): 

Chi(~- + 1) = TijChj(v), 
(11.104) 

chi(-  1) = Si~Chj(~). 

The matr ix  T is easy to determine. From eq.(11.99) we immediately derive 
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c 2 (11.105) 

where ~i is some vector in the conjugacy class (i). The S transformation,  

on the other hand,  is more involved. We obtain for the level one characters 

the following result: 

Nc 
1 1 ~ e27ri'Xi'AiChj(v). (11.106) s :  

This is actually not difficult to derive. The weights in the i- th conjugacy 

class can be writ ten as 

{A (0 } = 5,(~) + AR (11.107) 

where .~(i) is some representative weight and A R the root lattice. We then 

write 
1 _i}(~(0+A)2 

Chi( -  )--r/n(_l/z.) E e 
~,EAR (11.1o8) 

1 1 e2~riA.~(i) eiTrrA2 
- -  '7" ( " ) V ~  E AEAw 

where we have used eq.(10.53) and the fact that  Aw - (AR)*. With  A (i) • 

X(i) = A0').A(i) mod 1 we get eq.(l l .106).  It shows tha t  the S transformation 

acts as a Fourier transformation on the characters Chi(T): For the Dn 

algebra we obtain, using table 11.2, the following matrix: /i I 1 / 
1 1 - 1  - i  

Sij = ~ --I ei~rn/2 _ebrnl 2 (11.109) 

--1 --e i~rn/2 e i~rn/2 ] 

(i = 1 corresponds to (0), i = 2 to (V), i = 3 to (S) and i = 4 to (C)). One 

can verify tha t  S 2 = 1 for n even. For n odd, acting with S 2 interchanges 

the S and C conjugacy classes. This is a general feature: if complex repre- 

sentations are present, S 2 ~ 1 but  S 4 = 1. For the An series Skl is given 

by (k,l = 1 , . . . , n  + 1) 
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1 2~ri(k 1~(l 1 
- h - - ~ -  , , -  ) ( I i . i i 0 )  

Finally the E6 characters transform like A2 (E6 and A2 have the same 

fusion rules), the E7 characters like the A 1 characters and for E 8 S and T 

are one. The E 8 character is a modular invariant in agreement with our 

result of Chapter 10 that the partition function of an even self-dual lattice 

is modular invariant. 
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Chapter 12 

Conformal  Field Theory III: Superconformal  Field 
Theory 

In Chapter 4 we have demonstrated the usefulness of conformal field theory 

as a tool for the bosonic string. In the same way as conformal symmetry  

was a remnant  of the reparametrization invariance of the bosonic string in 

conformal gauge, super-conformal invariance is a remnant  of local super- 

symmetry of the fermionic string in super-conformal gauge. This leads us 

to consider super-conformal field theory. In many aspects our discussion of 

super-conformal field theory parallels that  of conformal field theory and we 

will treat those rather briefly. There are, however, new features which we 

will present in more detail. 

The n = 1 superconformal algebra is due to Ramond [1] and Neveu 

and Schwarz [2]. The models with extended n -- 2, n = 4 superconformal 

symmetry were formulated by Ademollo et al. [3]. An introduction to the 

subject and also a more complete list of references can be found in the 

reviews listed in Chapter 4 and in refs. [4, 5]. 

The generators of super-conformal transformations are the conserved 

energy-momentum tensor T(z) and the conserved world-sheet supercurrent 

TF(z) 1 

tAs in Chapter 4 we will only consider the holomorphic part of the theory. Note that 

whereas both sectors of the theory are conformally invariant, it is possible that only 

one of them, say the holomorphic one, exhibits superconformal invariance. This is 
for instance the case in the heterotic string theory. We should, however, mention 
that superconformal invariance can also appear in the internal sector of the bosonic 

string. 
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The basic objects of super-conformal field theory are conformal (or pri- 

mary) superfields 

~(z, 0) = Co(z) + eel(z) (12.1) 

where 0 is a constant anticommuting Grassmann variable and ¢0 and ¢1 

are conformal fields of opposite statistics. 2 If ¢ is of weight h, ¢0 and ¢1 

have conformal weights h and (h -t- ½) respectively; i.e. under infinitesimal 

conformal transformations we get 

~¢0(z) = [hO~ + ~0]¢0(z), 
(12.2) 

~¢1(z) = [(h + ½)0~ + ~0]¢1(z). 

Under two-dimensional supersymmetry transformations the two compo- 

nents of a superfield are transformed into each other according to 

~¢0(z) = ~-~(zl¢l(z), 
(12.3) ] 

~¢1(z) = ~(z)O¢0(z) + hO~(z)¢o(z) 

where the anticommuting analytic function e(z) parametrizes infinitesimal 

holomorphic supersymmetry transformations. We have used the notation 

,~¢(z) = [TF~, ¢(z)] (12.4) 

where 

TF = / dz ~--~(z)T;(z) (12.5) 

are an infinity of conserved charges. T F is the anticommuting generator of 

the superconformal algebra. Note that the supersymmetry transformation 

eq.(12.3) is the "square root" of conformal transformations eq.(12.2) in the 

sense that 

2One can formulate the following discussion in terms of superfields and super-space 

variables which makes two-dimensional supersymrnetry manifest. We will however 

use the component formalism. 
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where 

[a~l, ~]¢0(z) = [hO{ + ~a]¢0, 
(12.6) 

~" --" ½E2E1. 

We can again translate the transformation rules for conformal superfields to 

operator product expansions. Using the techniques of Chapter 4 we easily 

find 
h¢0(w) + 0¢1(w) + 

T(~)¢0(~)  ~ (z - ~)2 z---z-~ ' 

T ( Z ) ¢ l ( W )  ~ (h  -t- 1)¢1(w) 0¢1(w) 
(z ~)2 + - -  - -  Z - - W  

T ~ ( z ) ¢ 0 ( ~ )  ~ ½¢1(~1 + . . .  
Z - - W  

. . .  

(12.7) 

h¢0(~) + ½o¢0(w) + . . .  
T ~ ( z ) ¢ l ( ~ )  ~ (z - ~ ) 2  z - 

The superconformal algebra is specified by the operator products of the 

generators of superconformal transformations: 

T ( z ) T ( w )  ~ (z ~I8 2T(w) 0T(w) W) 4 + (z w) 2 - t - ~ - b . . .  (12.8a) 

~TF(w) aTe(w) (12.8b) 
T ( z ) T F ( w )  "' ~ : ~ + z - w + " "  

T F ( z ) T F ( w )  "~ (z - w) 3 + ~ z - w  + "'" (12.8c) 

This is the n = 1 superconformal algebra. (It is n = 1 because we have 

only one supercurrent. We will encounter extended superconformal algebras 

below.) The operator products can again be verified by commuting various 

combinations of conformal and sup erconformal transformations. Eq.(12.Sb) 

simply states that T F is a primary field of the Virasoro algebra of weight 

h = 3/2. Eq.(12.Sc) reflects eq.(12.6). Note that the central charges in 
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eqs.(12.Sa) and (12.8c) are related. The reason for this will be given below. 

A central extension of eq.(12.8b) is forbidden by scale invariance and the 

Grassmann properties of T (even) and T F (odd). We have normalized the 

central charge such that a free superfield X(z,O) = X(z) + O¢(z), where 

X(z) and ¢(z)  are free world-sheet bosons and fermions respectively, has 

= 1. (The central charge c in eq.(4.26) and ~ are related by c = ~ . )  We 

will explicitly verify the algebra for this case below. Comparing eqs.(12.7) 

and (12.8) we find that, apart from the central charge terms, TF and T are 

the two components of a h = 3/2 superfield. 

As in the bosonic case we now expand T and TF in modes and derive 

their algebra from the operator products. This will of course give the super- 

The modes of T(z) are defined as in Chapter 4. We Virasoro algebra. 

expand T F as 

or  

1 TF(Z)-=- ~ ~ z - 3 / 2 - r G r  (12.9) 
r E Z + a  

We have introduced the parameter a to distinguish NS and R sectors. In- 

teger modings (a = 0) correspond to the R sector and half-integer modings 

}) to the NS sector. (a 
condition 

From the reality of T F we get the hermiticity 

Gt =G_r. (12.11) 

Notice that  TF(Z ) is single-valued on the complex plane in the NS sec- 

tor and double-valued in the 19. sector. In general, the fermionic (anti- 

commuting) components of NS superfields are single-valued on the plane 

whereas the fermionic components of R superfields are double-valued. That 

is ¢~S(e2~riz) -- +¢~S(z) and ¢I~(e2Ztiz) = - ¢ ~ ( z ) .  This is the reversed 

situation we had on the cylinder. The reason is that  when we map a field 

of dimension h from the cylinder to the complex plane we have the Jaco- 

bian factor (1/z) h which changes the analyticity properties of world-sheet 
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fermions which have half-integer conformal weights. This discussion will 

especially apply to the world-sheet fermions ¢(z). Using the contour defor- 

mation trick of Chapter 4 we easily show that the operator algebra eq.(12.8) 

is equivalent to 

3 m)&~+~ [Lm, L,~] = ( m  - n )L .~+n  + -g(m - 

[ Lm,  C,]  : (1,~ _ ~)Cm+,. (~2.12) 
^ 

{ a T , c , }  = 2L,.+, + ~ [ r  2 - ¼]a+,.  

Note that since T F is an anti-commuting field the operator product 
1 TF(z)TF(w) leads to an anti-commutator of the modes. Only for a = 

(i.e. in the NS sector) exists a finite dimensional subalgebra, generated by 

Lo, L:kl and G+½. This is the super-algebra SL(2) ~ OSp(ll2 ). From the 

Jacobi identity [{Gr,Gs},Ln] + {[Ln,Gr],Gs} - {[Gs,nn],Gr} = 0 we get 

that the central charge parameters ~ in eqs.(12.Sa) and (12.8c) have to be 

tile same. 

We can now also easily work out the commutation relations of the Ln 

and Gr with the modes of the primary fields. Define 

¢0(z) = ~ z-~-h¢0,~, 
(12.13) 

¢1(z) : E z -n -h -1 /2~ ) l ,  n" 

Fields with integer conformal weight always have integer mode numbers and 

fields with half-integer weights have integer mode numbers if they are in the 

R sector and half-integer mode numbers if they are in the NS sector. We 

then get 

[Lm, ¢0,n] = [m(h - 1) - n]¢o,m+n, 

[ Z m ,  ¢ , , n ]  = [ = ( h  - ½) - ~]¢,,m+~, 
(12.14) 

[ ,c,.,  ¢~,,,] = ~[(2h - 1),- - n ]¢o, , .+ , , ,  

241 



where we have introduced a constant anti-commuting parameter  e to make 

CGm a commuting quantity. 

Let us now turn to the Hilbert space of the superconformal field theory. 

From the commutat ion  relations 

[L0, Lm] = -mLm , 

[no,Gr]  = - r G r  (12.15) 

we conclude tha t  Lm, Gm, rn > 0 are lowering operators. Ground states 

are the highest weight states th) of the superconformal algebra; they are 

annihilated by a/1 the lowering operators and have conformM weight h: 

n01h) =hJh) 
Lmlh) = 0 for m > 0 (12.16) 

Grlh) = 0 for r > 0. 

We will treat  the action of Go in the R sector below. 

We have already seen in Chapter  4 that  unitari ty requires ~ > 0 and 

h _> 0. This can be refined for the superconformal case by considering 

(r > 0) 

<hlC~C-,Ih> = <hi{C,, C-,} lh> 
1 2 

- 2<hlLolh > + ~e(r  - ¼)<hlh ) 

2 f = ~2h + ~ ( ,  - ~j>~h,h~ >_ o 

from which we find tha t  

(12.i7) 

h >_ 0 (NS),  (12.18a) 

h > I--6 (1%). (12.18b) 

For ~ _> 1 these are indeed the only restrictions imposed by unitar i ty (cf. 

c _> 1 in the conformal case). For ~ < 1 one gets again only a discrete set 

of allowed ~ and h values, namely [6] 
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~ = 1  
.~(~ + 2) 

[(.~ + 2 ) ; -  mq] 2 - 

hp,q = 8m(m + 2) 
4 ÷ 1 ( 1 _  (_l)p_q) (12.19) 

m - 2 , 3 , . . . ,  l < _ p < m , l  < q < m + 2  

where p -  q E 2Z in the NS sector and p -  q E 2Z + 1 in the R sector. 

Let us now look at the two sectors separately starting with the NS 

sector. In analogy with the conformed case we define the S'L(2, C) invariant 

in- and out-vacua [0) and (0[ to be the states annihilated by the generators 

of SL(2, C). Clearly this vacuum is in the NS sector as it satisfies L0[0) - 0. 

Regularity of T and T F at the origin and infinity requires 

L~I0) = o n > -1 ,  (01L~ = 0 n < 1 
1 1 (12.20) 

GrlO) = 0 ~ -> - 7 '  (01Gr = 0 ~ -< 5" 

The correspondence between highest weight states and conformed superfields 

#(z, 9) of conformed weight h is made as follows: 

¢o(0)10) = Ih) 
(12.21) 

¢~(0)10) = (~-,/~¢o)(0)10) = G-~i~lh) 
where the second equation follows from [eG-zl2,¢o(z)] = E¢,(z) and we 

have defined (cf. Chapter 4) 

~r¢0(~)  = 2 f 
dw z) r÷l /2 .  ~iTF(w)¢o(Z)(W - (12.22) 

It is straightforward to show that I h) satisfies the highest weight conditions 

eq.(12.16) and for ¢1(0)10 > we easily find 

no(G_l/2[h)) -.-(h + 2)(G_1/2[h)) , 

Gll2(G-zl2ih)) = 2hih), 
= 0  

= 0  

m > 0 ,  

1 
m > - .  

2 
(12.23) 

Note that the relation 
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G 2 1 = L-1 (12.24) 

is the global supersymmetry algebra on the complex plane. It is the global 

algebra since G_½ = 2  J dz / dz T'z" -~iTF(z) and L-1 = ~ ( ) and it is the su- 

persymmetry algebra since L-1 is the translation operator on the plane (cf. 

Chapter 4). Since the vacuum satisfies G 1[0} - 0, NS supersymmetry is 

unbroken. 

In the R sector we can define a global supersymmetry charge on the 

cyhnder; it is simply Go as can be most easily seen by referring to Chapter 

7. Then the global supersymmetry algebra on the cylinder is 

(12.25) Go 2 =  L 0 -  17" 

Using the transformation law of the energy-momentum tensor under finite 

transformations, we find, for the map from the cyhnder to the plane (cf. 

eq.(4.41)) 

(L0)cyl. = (L0)plane 16 (12.26) 

and (Lo)cyl. is the translation operator on the cylinder. Note that  this shift 

in L0 in the R sector is the one described in Chapter 8 which was necessary 

to bring the NS and R super-Virasoro algebras into identical form. This is 

automatic here as the operator products in eq.(12.8) are the same for the 

two sectors. 

Clearly, R supersymmetry can only be unbroken if there exists a ground 

state which satisfies Go[h) = 0, implying that Lo[h) = ~[h ) .  3 This is 

in agreement with eq.(12.18b) if we take into account eq.(12.26). Since 

[Go, Lo] = 0, highest weight states come in orthogonal pairs 

]h +) and [h-} =- Colh+). (12.27) 

(It is easy to see that  if [h +} is a highest weight state then so is Ih-).) 

then Ih-) is a null state: If ]h +) is the R ground state with h = 1-6 

3Note  tha t  in the n = 1 discrete series I~ s u p e r s y m m e t r y  is unbroken for even rn only. 
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(h- lh-)  = (h+lC2olh +) = 0. It decouples since it is perpendicular to all 

descendants of [h+). So we can formally set [h-) = 0 in the case of unbro- 

ken supersymmetry. 

Since the Virasoro algebra is a subalgebra of the R-algebra, above high- 

est weight states must be created from the vacuum by ordinary conformal 

fields, the so-called spin fields S+(z);  i.e. 

I h+) = s+(o)lo) and lh-) = S-(O)[O).  (12.28) 

This, together with eq.(12.27) implies that GoS+(z) = S - ( z )  from which 

we derive 

1 1 
TF(w)S+(z)  "~ 2 (w - z) 3/2S-(z)  + less singular. (12.29) 

Likewise GoS-(z )  = (h - ~ ) S + ( z )  leads to 

T F ( w ) S _ ( z  ) ~ l ( h _  ~_). 1 S+(z) + less singular. (12.30) 
16 (w - z)3/2 

We see that the spin fields introduce branch cuts into the operator algebra. 

Also, since they transform the NS ground state into the R ground state 

they interpolate between the two sectors. This means that if we take a 

NS fermion and carry it around the spin field it feels the branch cut and 

changes sign; i.e. 

¢~S(ze2~)s~(o) : -¢}~S(z)S~(O) (I2.31) 

which means that ¢~S (z)S~:(O) has an expansion in half-integer powers of z 

and zl/2¢t]S(z)S+(O) is single valued on the plane. We define the operators 

R + f ~  1 (12.32) Cs,~s  (z) = ¢}~S(w)(w - z F + h - l S ~ ( z ) ,  n + h e z + 

where h is the conformal weight of ¢~S(w). The CfR, n are the modes of the 

fermionic components of a R superfield. Thus one should not think of the 

NS and R superfields as two separate sets of superfields but rather as one 

superfield whose fermionic component gets modified in the presence of a 
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spin field. The superfields themselves act diagonally on states in the two 

sectors of the Hilbert space, i.e. 

INS}'~ INS) 
( I R )  ' ] = ( :  : ) ( [ R ) )  (12.33) 

whereas spin fields act off-diagonally 

INS)'] INS) 

In both sectors the descendants of a given ground state are obtained by 

acting with the lowering operators of the superconformal algebra. The n-th 

level of an irreducible representation is spanned by the following vectors 

with L0 eigenvalue h + n 

where 

G - r i G - r 2 . . .  L - r o l L - m 2 . . .  lh ) (12.35) 

0 < rl < r 2 . . .  and 0 < m l  _<m2... 

1 
n = Z r i  + E : ' ~ i ,  r~ e z + ~ (Ns), n e z (~). 

The condition on the fermionic oscillators takes into account that G 2 = 

L2m. 

Let us now return to string theory. The world-sheet bosons and fermions 

form two-dimensional superfields of dimension 1/2: 

z,,v~'(z,O) = ¢ , ( z )  + eox~'(z ) .  

1 S : 4zr f d2z(OX"OX" - ¢"0¢" - ~2"0¢") 

with action 4 

(12.36) 

(12.37) 

In the NS sector tb" has the mode expansion 

4This is the same action as given in eq.(7.32) after going to Euclidean coordinates. 

OX and ¢ are now anti-hermitian. 

246 



i¢ . ( z )=  E b~ z-"-½ 
nEZ+½ 

with (b~n) * = b~_n. Their basic operator product is 

Ct~(z)¢V(w) ,,~ __gt~V + finite 
Z--W 

which, by now familiar arguments, is equivalent to 

(12.38) 

(12.39) 

~£ b' 
{bm,bn} -- 5rn+ng~ v (12.40) 

We can also calculate the propagator. Using bn~[O) = 0 for n >_ 1/2, we get 

(¢"(z)¢~(~))~s = -  Z z-"w-m(ol b~' ~ b~ ½1o) 
m,nEZ n+~ rn- 

E l W n # v  = -  - ( z  ) 9 (12.41) 
n>0 z 
9#v 

- for Izl > Iwl. 
Z--W 

The propagator is also easily derived from the free field action eq.(12.37) 

using standard field theory arguments. We should note that this is the 

propagator on the Riemann sphere. On higher genus Riemann surfaces the 

propagator is more complicated due to the global structure of the surfaces. 

The short distance limit will however be the same as in eq.(12.41). Using 

the relation 

1.0~ -- - w) (12.42) 
1 52(z 

Z--W 

we find that the propagator satisfies 

o~(¢~(z)¢~(~)) = - 2 ~ 2 ( z  - w)g,  ~. (12.43) 

In the R sector the fields Ct~(z) have integer modings (cf. eq.(12.32)) and 

one can readily show that they also satisfy the anti-commutation relations 

eq.(12.40). This also follows from the fact that the short distance expansion 

for NS and R fermions should be the same since the branch cut in the R 

case cannot be felt locally. Of particular interest is the relation 
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{b~, b~} = g/~' (12.44) 

which is just  the Dirac algebra and allows us to identify the ¢ zero modes 

with Dirac matrices. Since [L0, b0 ~] = 0, the b0 ~ act on the R ground state 

which has to be degenerate. The spin fields that create them are spinors of 

SO(9,1) with conformal weight h = ~ = } (~ = d = 10, see below). The 

fact that  spinors of S0(9 ,  1) have conformal weight } can be easily seen 

by going to the Wick-rotated Lorentz group SO(10) and bosonize them (cf. 

The R ground states are then labeled by a spinor index of Chapter 11). 

so(9,1): 

and the bo ~ act as 

Io~> = s~(o) lo)  (12.45) 

1 
(12.46) 

where F t~ are the S0(9 ,  1) Dirac matrices which satisfy {F  tL, P v } = 2g t~v. 

We can now also calculate the propagator of Ct~ in the R sector. Using 

b~l~ ) = 0 for n > 0 and eq.(12.44) we get 

. . _ _  ]~ v --n -! --m -1 
(¢t~(z)¢V(w)) R ~ (bnbm>RZ 2w 

m , n E Z  

1 
- z ~ {  E <~b~-~)R z-~w~ + (bo"b~>R} 

n>O 
(12.47) 

- V75 (~)~ + j ig  

1 _ _ 1  (~ _/-~_ + J-~-)g.~, tzl > Iwl. 
2 z - w  Y w y z ,"  

Note that  this is just  the four-point function (0ts~(~)¢,(z)¢~(w)s~(0)10> 
(no sum over c~). The propagators in the NS and the R sectors have the 

same short distance behaviour, as they should. 

We still have to discuss the question of locality. As we have seen, the 

spin fields introduce branch cuts into the theory. A suitable string theory 
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however has to have local correlation functions to give well defined S-matrix 

elements. To arrive at a local string theory one performs a generalized 

GSO projection. This is a consistent truncation of the spectrum such that 

the resulting superconformal field theory is local. In fact, not only is the 

truncation consistent but also required by modular invariance. 

The energy-momentum tensor and supercurrent for the fermionic string 

are 

TF(z) : - l ¢ , 0 X " ( z ) .  
(12.48) 

T(z) follows from eq.(12.2) and (4.82). T F is computed in a similar way. 

Under infinitesimal supersymmetry transformations eq.(12.3), the action 

changes as 

1 / d2zOeTF. (12.49) 
= - 2 - ;  

Since X and ¢ are free fields, we can use Wick's theorem to evaluate op- 

erator products of composite operators such as T and TF. (We have again 

dropped normal ordering symbols.) One easily verifies the algebra eq.(12.8) 

with ~ = ~c = d where d is the range of the index #. 

The ghost system of the fermionic string is another example of a n = 1 

superconformal field theory. It consists of the (anti-commuting) conformal 

ghosts b, c and the (commuting) superconformal ghosts fl, 7. Together they 

form two conformal superfields B = fl + 0 b and C = c + 8 7 with conformal 

weights h = 3/2 and h = - 1  respectively. The action is (cf. Chapters 3 

and 8) 
1 

f d2z (bOc+ fl(gq,). (12.50) S=2-- ~ 
We can generalize the ghost system by considering superfields B and C with 

conformal weights ~ - I/2 and 1 - A (A C Z) respectively. The action is still 

given by eq.(12.50). (We will consider these generalized b, c systems in great 
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detail in Chapter  13.) The energy momentum tensor and supercurrent are 

calculated as before; one finds 

T (~) = -)~bcgc + (1 - ,,k)(c_.%)c - ()~ - ½)/3c9, T + ( }  - , , k ) ( 8 , 8 ) 7 ,  
(12.51) 

= + ( 1  -  )(aZ)c - - ½ ) z a c .  

We now use the operator products 

1 
c(z)b(w) ,'~ 7(z)fl(w) "~ (12.52) 

Z m W  

to show that  above system generates a n = 1 superconformal algebra with 

central charge c = -c)~+c "k-}. Here c A = 12~ 2 -12A+2 .  The first contribu- 

tion, - c  )~, is tha t  of the anti-commuting b, c system and the second, c - ~ ,  

that  of the commuting f l ,7  system. For the fermionic string (~ = 2) we 

then find the ghost contribution to the anomaly c g h ° s t  - -  - 2 6  + 11 = -15.  

The mat te r  fields come in chiral multiplets of the n = 1 superconformal 

symmetry.  Each of them contributes c = 3/2 to the conformal anomaly. 

This means tha t  we need ten of them for anomaly cancellation. Hence 

d = 10 as the critical dimension of the fermionic string. It is however by no 

means necessary to represent the 5 = 10 algebra in terms of free superfields 

eq.(12.36). For a d-dimensional space-time interpretat ion it suffices to rep- 

resent d of them as free superfields and have a ~ = 10 - d internal  n = 1 

superconformal theory (cf. Chapter  14). 

One may now ask whether extended superconformal algebras play a role 

in string theory. The answer is tha t  indeed they do. Let us begin with the 

case n = 2. The n = 2 gravity multiplet  is (ga~,xa,Aa) where besides 

the graviton we have a gravitino which is, in contrast to the n = 1 case, 

a complex Dirac fermion, and a U(1) gauge current. Since we have now 

gauge fields of spin 2, 3/2 and 1, Faddeev-Popov quantization will give b, c 

systems with A = 2, 3/2 and ~ = 1 where the ~ = 3/2 system is doubled, 

since a Dirac spinor is equivalent to two Majorana spinors. Their  combined 

contribution to the conformal anomaly is C g h ° s t  - -  - 2 6  + 2 x 11 - 2 = 
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-6 .  This has to be cancelled by the mat ter  fields. The n = 2 mat ter  

multiplets are (X,  ~,) where X is a complex scalar and ¢ a spin 1/2 Dirac- 

Weyl fermion, which is equivalent to two real scalars and two Majorana- 

Weyl fermions, thus contributing c = 3 to the conformal anomaly. We 

then conclude tha t  the critical dimension of the theory with local n = 2 

superconformal invariance is d = 2. The situation becomes even worse if 

we consider the n = 4 case 5. The n = 4 gravity multiplet is (gal3, Xia, Aiaj) • 

i is a SU(2) index. The four gravitini form a complex doublet of SU(2) 

and the SU(2) currents transform in the adjoint. The ghost contribution 

to the anomaly is therefore c g h ° s t  = --26 H- 4 × 11 -- 3 × 2 = 12. n = 4 

mat ter  multiplets (4X, ¢,) contain four real scalars and a complex doublet 

of spinors which gives a c = 6 contribution to the conformal anomaly. This 

leads to a critical dimension d = -2 .  This is clearly unacceptable for our 

purposes. 

Nevertheless, extended superconformal algebras do play an important  

role in string theory, however only as global symmetries. The maximal 

gauged symmetries is n = 1. There does exist a deep connection between 

space-time symmetries and world-sheet symmetries. In particular, N = 

1 space-time supersymmetry in four dimensions requires (global) n = 2 

superconformal invariance on the world-sheet. We will show this in Chapter 

14. Here we will only present a brief discussion of the extended n = 2 

superconformal algebra. 

The local symmetries for n = 

supersymmetry  and U(1) invariance; 

2 are reparametrization invariance, 

they are generated by the energy- 

momentum tensor T(z) ,  the supercharge TF(Z ) and a U(1) current J(z) .  

(Again, we only discuss the holomorphic sector of the theory.) The su- 

percharge splits into two parts with U(1) charges 4-1 respectively: T F = 

5 T h e  case n = 3 does  not  seem to be  of i n t e r e s t  for s t r i n g  theory .  
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T~ + T F.  These generators satisfy the following operator algebra: 

Ic 2T(w) OT(w) 
T(z)T(w) ~ (: _ w) 4 -F (z - w) 2 + ~ -F ...z_w 

3 ~+ OT~ ~F(w)  + ~ + . . .  
T ( z ) T } ( w )  ,,, (z _ w) 2 z - w 

J(w) OJ(w) 
T(z)J(w)~ ( z - w )  2 +~z-w + 

y ( z ) J ( w )  ~ ~c 
( = _  ,w)2 + "'" 

j(~)r[(w) ~ ~T~(w----5) + . . .  
Z , - - W  

1 ~ c  + 
r '~(z)TF(w) " (z - w) 3 

¼S(w) ¼T(w) + }OJ(w) 
( ; - ~ 2  + z - 

. . .  

(12.53) 

T,ff ( z )T~ ( w ) ,'., finite. 

It is easy to see that  T and T F = T,~ + T F form a n = 1 superconformal 

algebra. Above operator algebra can be converted to (anti)commutators of 

the modes of the generators defined by 

T(z)  = E z-'~-2Ln 
nEZ 

T~(z) E -,,-3/2Ta~± -- Z 'J n-t- a 
nEZ 

:(z) = E z-~-I  Jn 
n E Z  

with hermiticity conditions 

L n =  / ~ i z n + l T ( z )  

a S a  = / 2%N"dz -"+~="~+ ~ ; 

j n = /  dz n 
~-i~i z J(z) 

(12.54) 

+t = L~ = L_ , ,  , C, ,+o C_-,,_,, , J~ = S_,,. (12.55) 

The operator algebra is then equivalent to 
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C 2 
[Ln, Lm] = ( n -  m)Ln+m + -i-~n(n - 1)6n+m, 

[Ln, + (2 Grn+a ] : - m T a)Gn+m+a, 

[nn, ]m] : -~]n+m,  

[Jn, J~] = ~ m + n ,  

[J~, ¢m±~] ~ : + C ~ + m ~ ,  (12.56) 

c 
{ Gn+ a, Gin_a} : -~ Lm+n + -~ - , 

+ G + ,- {Gn+a,  rn+a}  ----- { G n - a ,  C ~ n - a }  : O. 

The relation between the central charges in the T(z)T(w),  T~(z)T~(w)  and 

J(z)J(w)  operator products are again fixed by Jacobi identities. 

Note tha t  we have introduced the real parameter a. From the mode 

expansion of T~ we find 

r~(e 2~z) = -~:2~°T~(z),  (i2.57) 

i.e. a labels the boundary conditions of the fermioaic operators T/~. For 

a 6 Z we are in the R sector whereas a E Z + ½ corresponds to the NS 

sector. The algebras for a and a + 1 are clearly isomorphic and we can 

restrict a t o  a E  [0,1). Note that  only f o r a = 0  a n d a -  ½ can we f o r m a  

real T F : T,~ + T~ with definite boundary conditions. In the n = 1 case 

we had only two sectors since there the supercurrent was real which allows 

only for periodic or anti-periodic boundary conditions. In the n : 2 case 
1 we can interpolate between the two sectors by varying a from 0 to 2" 

For a : ½, i.e. in the NS sector, there exists again a finite dimensional 
± 

subalgebra generated by L0,=~l, G+z/2, G~_I/~. and J0. This is the algebra 

0Sp(2,2).  

For different values of a the corresponding representation spaces are 

obviously different. From an algebraic point of view the algebras are however 
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equivalent for all values of a. To see this let us write the { G + , G  - } anti- 

commutator  in the following form 

1 c 25~+m ] {C;+a+q,Gm_a_ ~} = ~[nn+m + ~lSn+m + 6 J 

1 1 5 c 1 

(12.58) 

One now verifies tha t  the generators 

L~n = nn + qJn + c~125n 
6 

77+ G + (12.59) G n i a  = n=h(a+r}) ' 

1 5 J2 = Jn + "~ n 

satisfy the n = 2 superconformal algebra. Therefore the algebras are equiv- 

alent for all a. Under the change of a the conformal weights h and U(1) 

charges q of any state change by 

h --+h ~ = h + r/q + cr/2 
c v (12.60) 

q --+q~ = q + ~q.  

This is called the spectral flow [7]. For instance, the OSp(2, 2) invariant 

vacuum 10) with (h,q) = (0,0) is always in the NS sector. Now the spectral 

flow takes it to a state (7/= 1/2) with (h,q) = ( ~ ,  ~). 

As usual, we now define highest weight states by the conditions 

er iC> -- o , > o, 

L n l ¢ >  --  J~ l¢>  = o n > o ,  

Lo [¢>  = h ie> , Jol¢> - ql¢>. 

(12.61) 

Here q is the U(1) charge of the state. Actually, the conditions for Lr, and 

Jr, (n > 0) already follow from Gf[¢)  = 0 and the use of the algebra. Let 

us consider the constraints from unitarity. In the NS sector we have 
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- ( ¢ 1  + - {c+1/~,c~_1/~}1¢1 
(12.62) 1 

= ~<¢lL0 + ½J01¢) 

_ -  ~-(h + ½q)(¢1¢), 
4 

l q  i.e. h > ~l ] in the NS sector. When the bound is satisfied, there are two 

states which satisfy 

ail/~lh ~ ½q) = 0. (12.63) 

To each highest weight state there corresponds a primary field ¢(h,q) of the 

n = 2 algebra. For the fields with h = ½1q[, eq.(12.63) is equivalent to 

T~(z)¢(~:M"q)(w) ,',, finite. (12.64) 

These fields are called chiral (auti-chiral) primary fields. For a (anti-)chiral 

primary field the action of only one of the two supercharges results in a new 

field. It is not hard to show that  any state with h -= ½1ql is (anti-) chiral 

primary and satisfies h < ~. 

c and states In the R sector we find, as in the n = 1 case, that  h _> 

with h = ~ satisfy G~I¢} = 0. Also, states that  follow from chiral primary 

fields through the spectral flow, satisfy G_!l 1¢} = 0. 

Since the spectral flow connects the NS with the R sector, and states 

in these sectors of the fermionic string are space-time bosons and fermions 

respectively, we have here an indication of the connection between n = 2 

world-sheet and N = 1 space-time supersymmetry. We will elaborate on 

this in more detail in Chapter 14. 

To close this discussion of the n = 2 algebra, let us give two sim- 

ple realizations. The first one consists of two free real n = 1 superfields 

Xl,2(z,O) = X1,2(z)+ O@'2(z). Let us define the complex fields 

X± 1 1 c e  1 1 = r : ( x  ± i x  ~) and = ~(¢  +~¢~). (12.65) 
x/z 
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The  energy m o m e n t u m  tensor  and supercurrent  are t hen  

T ( z )  = -Ox+ox-(z) - + 0¢-¢+(z)), 

TF(z) = T[ ( z )  + TF(Z) 

where 

(12.66) 

1 1 
T~ -- -2%b+OX-(z)  and TF -- -2%b-OX+(z).  (12.67) 

We can now define a U(1) current  

s(~) = ¢ -¢+ (z ) .  (~2.68) 

It is t hen  s t ra ightforward to verify tha t  T, TF ~ and J generate  a c -- 3, n - 2 

superconformal  algebra. This  example  is easily general ized to the  case of 

2k free superfields f rom which we can build k complex ones. This leads to 

a c = 3k, n - 2 algebra. In the  str ing context  this example  arises in 2k- 

d imensional  torus  compactif icat ions.  The  second example  consists of only 

one real free boson:  

T(z)  = - lco¢O¢(z)  , 

T,~(z) = 2~3e+i~(z) ,  (12.69) 

S(z) = ~O¢(z), 
which generate  a c = 1, n ---- 2 superconformal  algebra. 

In a similar way one can discuss the  n - 4 algebra which is relevant  for 

N - 2 space- t ime super symmet r i c  s tr ing theories. We will however not  do 

it here and refer ins tead  to the  l i terature.  
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Chapter 13 

B o s o n i z a t i o n  o f  t h e  F e r m i o n i c  S t r i n g  - C o v a r i a n t  

L a t t i c e s  

We will now reexamine the 10-dimensional fermionic (spinning) string us- 

ing the bosonic language. The aim of this bosonic formulation is the con- 

struction of the covariant fermion emission vertex operators, as they were 

discovered by Friedan, Martinec and Shenker [1] and by Knizhnik [2]. This 

will in turn lead to the introduction of the so-called covariant lattices [3-6]. 

Recall the action of the fermionic string in superconformal gauge: 

1 f d2z(c~Xl~SXl~ ¢~c~¢, - ¢/~cq¢/~) (13.1) S 
= 4~r J 

where we have only written the matter (X~,¢/~) part. We will turn to 

the ghost part below. These fields generate a superconformal field theory 

with 8 -- 10 (c = 15) where from now on we discuss only the right-moving, 

holomorpkic part of the theory. The two-dimensional supercharge, also 

called supercurrent, is given by: 

Tr(z) = -~c~X~(z)¢~'(z). (13.2) 

Now, applying the techniques of bosonization as introduced in the previous 

chapter, we replace the ten real fermions ¢# (z) (# = 1 , . . . ,  10) by five chiral 

bosons ¢i(z) (i = 1 , . . . ,  5) with momentum eigenvalues being lattice vectors 

of the D 5 weight lattice. 'The bosonization is performed by converting the 

ten real fermions ¢#(z) to the complex Cartan-Weyl basis: 

gt+i(z) = ~ 2 ( ¢  2i-1 :k.i¢2i)(z) i =  1 , . . . ,5 .  (13.3) 

The action for the complex fermions is 
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1 f d2z(~P+i~¢ z-i  + ¢z-iOcz+i). (13.4) S = -4-~ 

The part of the generators of the Wick rotated Lorentz group SO(10) which 

are built from the world-sheet fermions are bosonized according to 

= :  : =  i o ¢ i ( z )  
(13.5) 

= :  : = :  : ( i  < j )  

where the complex fermions themselves are expressed as 

¢,'+i(z) =: e+i¢~(z) : . (13.6) 

The states of the spinning string theory are created by vertex operators 

which contain the five bosons el(z). Let us concentrate on expressions built 

by exponentials of these bosons; possible derivative terms O¢i(z) play only 

a trivial role in the following. Also, we will not discuss the X~-dependent 

part of the vertex operators. 

In the NS sector the states are space-time bosons. The ground state is 

the NS vacuum 10) which is a tachyon as discussed in Chapter 8. The first 

excited state is the massless ten-dimensional vector I¢ ' )  = b#-l/: I 0} with the 

corresponding vertex operator ¢/~(z). Thus, the vector vertex operator in 

the bosonized version of the theory is simply given by eq.(13.6). In general, 

states in the NS sector are described by vertex operators 1 

V A (z) =: eiA'¢(z): (13.7) 

where ,~ are D5 lattice vectors in the 0 or V conjugacy class. E.g. for the 

tachyon ~, = o and for the SO(10) vector A = (0 , . . .  , + l , . . .  ,0). 

On the other hand, states in the R sector of the theory have fermionic 

statistics. They are created again by vertex operators of the form eq.(13.7) 

but now with ), being a lattice vector of the S or C conjugacy classes 

1 Here and in the following we will drop cocycle factors. They are however necessary 

to produce manifestly covariant results, as e.g. in eq.(13.8) below. 
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of D 5. As ground states there are the two massless spinors of oppo- 

site chirality denoted by IS~) and ISa) with corresponding D 5 weights 

A --(-F½,+½,-F½,+I, :E 1) with an even and odd number of minus signs 

respectively. 

The vertex operator of the massless vector has conformal dimension 
A2 

h - T -- ½" Remember on the other hand that vertex operators of physi- 

cal massless states must have h -- 1. Similarly, the massless spinors belong 

to vertex operators with conformal dimension )~2 __ ~ in contradiction to 

the physical state condition. (Note that for massless s t a t e s  e i k ' X  has van- 

ishing conformal weight.) This discrepancy clearly indicates that the vertex 

operators of eq.(13.7) with A E 0, V, S, C of D 5 are not the full vertex op- 

erators of the fermionic string theory and have to be complemented by an 

additional piece. 

The incorrect conformal dimension is however not the only serious draw- 

back. Consider the operator algebra between the vector ¢~ and the spinor 

fields S a, S a in a SO(10) covariant basis: 

1 ( / ' /~ )a /~  " 
¢ ' ( z ) S ~ ( w )  - -  V f  (z - w) I /2sz(w)  + " "  

1 (r~) ~# ¢~(w) + 
S"(z)S#(~)  = , / I  (z - ~ ) 3 / 4  " 

C ~ 1 (I"~Fv) a~ . v 
S ~ ( z ) S # ( ~ )  - (z - ~)5/4 + ~ (z - ~ ) x / 4 ¢ ' ¢  ( ~ )  + . . . .  

(13.8) 

Here C aB is the SO(10) charge conjugation matrix and ( /~)a# are ten- 

dimensional Dirac matrices. There are several ways to derive these operator 

products. One uses bosonization and an explicit form for the cocycle factors. 

Another is to use SO(10) invariance. 
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These equations show that  SC'(z) (S'~(z)) creates a branch cut which 

renders the theory non-local. (Locality of the operator product  algebra is 

however necessary e.g. to get well-defined scattering amplitudes.) This is 

due to the D5 inner-product rule (V).  (S) = 1 + n, n e Z (cf. table 11.2). 

Furthermore, S a does not anticommute with itself since (S). (S) = 5/4 + n. 

Also note the branch cut in the operator product between S a and S ~ due 

to (S).  (C) = 3/4 + n. 

In summary, without further modifications the fermionic string theory 

is non-local and therefore ill-defined. This is simply a reflection of the prop- 

erties of the D 5 weight lattice. Therefore one can expect tha t  the complete 

vertex operators of the fermionic string requires a modification of the D5 

lattice. The missing piece will be provided by the superconformal ghost 

system. Before demonstrating this, let us first present a general discus- 

sion of first order systems such as the b, c and /3 ,7  ghost systems. Their  

bosonization will be of particular importance [1, 7]. 

13.1 F i r s t  o r d e r  s y s t e m s  

We introduce a common notat ion and consider b and c being conjugate fields 

with first order action 

S = 1__27r / d2zbOc" (13.9) 

The field b has conformal weight A and c has weight 1 - A. The action is 

then conformally invariant. The statistics of b and c is parametrized by e: 

e = 1 for Fermi statistics and e = - 1  for Bose statistics. The equations of 

motion and their  solutions are 

cSb = 0, i.e. b = b(z), 

c5c = 0, i.e. c = c(z). 
(13.10) 

The propagator is 
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1 {c(z)b(w)} -- ~ (13.11) 
Z - - W  

and the basic operator products are 

1 
c ( z ) b ( w ) _ -  + . . .  

z - w (13.12) 
C 

b(z)c(w) = + . . .  
Z - - W  

The bb and cc products  are non-singular. We have the mode expansions 

nES-A+Z 

c(z) = E z-~-(~-~)c~ 
nES+)~+Z 

(13.13) 

with the following hermitici ty conditions 

= , b _ , , ,  4 = c_,, (13.14) 

and (anti) commutator  

[cm, b,~]~ = 5m+n. (13.15) 

For the case of hMf-integer A, there are two sectors, the R sector specified 

by 5 = ½ and the NS sector with 5 = 0. 2 The action of the modes on the 

S L  2 invariant vacuum is 

bn[O) = 0 for  n _> 1 - 
(13.16) 

cn [0) = 0 for n > 

The energy-momentum tensor is 

T = - A b O c  + ( 1  - A)Obc = 

where we have introduced 

(13.17) 

Q=~(1-2~). (13.18) 

2We can also have 6 = ½ for integer )~ corresponding to a twisted sector. 
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The significance of Q as a background charge will become clear below. The 

Virasoro operators are 

m 

(13.19) 

Tile central charge is easily found by computing the operator product be- 

tween T(z)  and T(w): 

c = -e(12A 2 - 12A + 2) = e(1 - 3Q 2) (13.20) 

and it is straightforward to verify that 

T(z)b(~)- ( z -  w)2 + 

and 

ob(~) 
+ finite, (13.21) 

Z ~ W  

T(z)c(~) = ( 1 -  ;,)c(~) Oc(~,) (z - ~)2 + ~ z _ ~  + finite. (13.22) 

as expected. In table 13.1 we collect the values of the various parameters 

for the conformal and super-conformal ghost systems and complex NSR 

fermions. 

Table 13.1 Familiar first order systems 

b~ c 

/3,7 
k~±i 

£ 

1 

-1  

A 

2 
3 

1 

2 

0 

c 

-26  

11 

1 

The action eq.(13.9) is invariant under a chiral U(1) with current 

j (z )  = -b(z)c(z)  = y:~ z - n - l j n  (13.23) 

where 

Jn = E eCn_mbm. (13.24) 
m 

The operator products of b and c with j reflect the fact that they have U(1) 

charges - 1 and +1 respectively: 
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-1 
j ( z ) b ( w )  -- b (w)  -t- . . . 

Z - - W  

1 
/ ( z l c ( w )  _ - -  c(w) + . . .  

Z - - W  

(13.25) 

The operator  product  of the chiral current and the energy-momentum 

tensor is anomalous: 

Q j ( w )  O j ( w )  
T ( z ) j ( w ) -  (z  - w) 3 + (z - w) 2 + - - z - w  + "'" (13.26) 

and only for Q = 0, (A -- ½) is j a true conformal field with h -- 1. This 

implies tha t  the U(1) current itself is not conserved. One can show that  

the anomalous conservation law is O j ( z )  = - ½ Q O 0 o "  where cr is the Weyl 

degree of freedom of the metric ds 2 = 2eadzdS. With R - -2e-~(~0cr we 

find 

O j ( z )  = 1 Q v / h R ,  (13.27) 

where h is the determinant  of the two-dimensional metric and R is the 

corresponding curvature scalar. The anomaly in the U(1) current is related 

to the existence of b, c zero modes, their number being determined by the 

Riemann-Roch theorem: 

N c  - Nb  = e Q ( g  - 1) = (1 - 2A)(g - 1) (13.28) 

where g is the genus of the Riemann surface. The right hand side is the 

amount by which the ghost charge is not conserved. This can be seen by 

integrating eq.(13.27). Note that  the situation is very similar to the U(1) 

anomaly in gauge theory. There the anomalous divergence of the chiral U(1) 

current is also given by a topological quanti ty which measures the difference 

between the number  of massless left- and right-handed fermions, i.e. the 

zero modes of the chiral Dirac operator. 

The operator product  eq.(13.26) is equivalent to the anomalous com- 

mutators  
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and 

1 
[Ln,j(z)] = -~Qn(n + 1)z n-1 + (n + 1)znj(z) + zn+lOj(z)  (13.29) 

1 
[Ln,jm] = ~Qn(n  + 1)Sn+m - mjm+n. (13.30) 

From eq. (13.29) it is appareant  that  j (z) transforms covariantly under trans- 

lations (L_I) and dilatations (L0) but not under the transformations gen- 

erated by L+I; i.e. j (z)  is not quasi-primary. It is easy to show using the 

hermiticity conditions eq.(13.14) tha t  jtn --- - j - n ,  V n  7~ O. The case n -- 0 

is delicate because of normal ordering ambiguities. We can use eq.(13.30) 

to find j0t: 

i t  = - [ L - I , j l ]  t = - [ L I , j - 1 ]  - - j 0  - Q. (13.31) 

Then, if Op is an operator with U(1) charge p, i.e. [j0, Op] = pop and Iq) 

a state with U(1) charge q, we find p(q'lOplq) = (q'l[j0,Op]lq) = - (q '  + 

q + Q)(q'lOplq); i.e. we have to insert an operator with U(1) charge p -- 

_ (q + qt -t- Q) in order to get a non-vanishing result. We then normalize the 

states such tha t  

( -q  - QIq> = 1 (13.32) 

for the non-vanishing inner products. 

The b, c system is bosonized by defining a chiral scalar field ¢(z) -- 

f f  j(z')dz', o r  

j (z )  = e0¢(z) (13.33) 

with 

¢(z)¢(w) ~ eln(z - w) .  (13.34) 

In terms of ¢ the action is 

S = -4--~ 

from which the anomalous current conservation law eq.(13.27) follows as 

the equation of motion for ¢. The energy momentum tensor derived from 

above action is 

265 



T (j) = c ( l j  2 -  ~Qc~j). (13.36) 

As a check we can reproduce eq.(13.26). 

Conformal fields V(z) are given by exponentials of ¢(z): 

V(z) --: eq¢(z) : (13.37) 

where q is (half-) integer for the NS (R) sector. This will become clear 

below. (We again suppress possible derivative terms and will drop normal 

ordering symbols from now on.) Therefore, the allowed bosonic momenta 

are points in a D1 lattice where integer lattice point belong to the 0 or V 

conjugacy classes and half-integer elements to the S and C conjugacy classes 

of D1. The U(1) charge of eq¢(z) is easily determined 

j (z)e  q¢(w) - q e q¢(w) + . . . ,  (13.38) 
Z - - W  

and its conformal dimension follows directly from 

T(z)e q~(~) r ½~(q + Q) °w]~q~(~) (13.30/ - L  ( z _ w ) 2  + ~--:-- + " "  
The contribution to the conformal weight which is linear in q has its origin 

in the ghost number anomaly. The operator e q¢(z) shifts the ghost charge 

of the vacuum by q units. It is the vertex operator for a state Iq): 

fc dz leq~(z)lo) = ~q~(°)[o) (13.40) Iq) = 2~i z 
0 

which satisfies Jolq) = q[q). E.g according to eq.(13.32) one obtains 

(0[e-Q~(z)10) = 1. (13.41) 

So far we have bosonized only the U(1) current j ( z )  which is a bilinear 

in the b,c fields. In the case of Fermi statistics (4 -- -t-1), the fields b,c 

themselves can be bosonized in a straightforward way - they are given by 

the exponentials of ¢(z) (compare also with eq.(13.6)): 
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e -  +1" (13.42) 
¢ ( z ) ¢ ( w )  ~ l n ( z  - w) .  

On the other hand, in case of Bose statistics the "bosonization" of b(z), 
c(z) is more complicated. In fact, the energy-momentum tensor T(J) is not 

complete for e - - 1 .  If we calculate the anomaly in the T(J)T(J) operator 

product  we find 

c (j) = (1 - 3eQ 2) - { c+2C e-e- +1_1 (13.43) 

where c refers to the value of the anomaly given in eq.(13.20). This means 

that  in the bosonic case the field ¢ does not give a complete description 

of the system. This can already be deduced from the fact the solitons e +¢ 

are always fermions and cannot accommodate Bose statistics. One requires 

extra fields for the "bosonization" of b, c. What  is needed is a fermionic 

system with c - - 2 .  Let us therefore define two conjugate free fermions 

~(z), ~(z) of conformal weight 1 and 0 respectively which consti tute a first 

order system with e - 1, An~ _- 1, Q ~  = -1 ,  c ~  - -2 .  Their  operator 

product  is 
1 Tl(z)((w) = ((z)~(w) - -  - -  --b . . .  (13.44) 

Z - - W  

Then the Bose fields b, c can be "bosonized" as 

b(z)  = e - ~ ( z ) a ~ ( z )  , c ( z )  = e~(z)~(z) 
e =--1: (13.45) 

¢(z)¢(w) ~ - ~ ( z  - w). 

The correct operator products eq.(13.12) between b and c are easily verified 

using eq.(13.45). 

The ~, ~ system contains its own chiral U(1) current which provides a 

second scalar field )/(z): 
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v ( z )  = e - Z ( z )  

, x ( z ) x ( w )  = l n ( z  - 

, = eX(Z). 
(13.46) 

Thus in terms of ¢ and X, b and c are expressed as: 

b(z) = e - ¢ ( z ) + x ( z ) O x ( z )  , c(z)  = e ¢ ( z ) - x ( z ) .  (13.47) 

It is impor tant  to note tha t  the irreducible representations of the b, c algebra 

are built only from ¢, 77 and c3(; the zero mode field (o never appears in the 

b, c algebra. As long as we do not include ~0 we do not have to neutralize 

the background charge of the 77, ~ system. 

Let us now address the question of vacuum states. A hint tha t  the SL2  

invariant vacuum [0) might not be the only possible one came already from 

our discussion of the conformal ghost system. We know tha t  locality requires 

that  cn[O} = 0 for n > A. From [Lo,cn] - - n C n  we find tha t  Locn[O) = 

-ncn lO)  :/= 0 for n < A. In particular, for 0 < n < A, cn lowers the energy 

of the vacuum [0). If cn is a bosonic operator, we can apply it to [0) an 

arbitrary number  of times thus lowering the vacuum energy by an arbi t rary 

amount. We find tha t  in the bosonic case the spectrum is unbounded from 

below. It is clearly also unbounded from above. Consequently, the question 

of the vacuum is ambiguous. In the Fermi case we can a[so build states 

with negative energy, but not without lower bound. Here the situation 

is familiar from Dirac theory; we can define different vacua depending on 

to what level the states are filled, and these vacua are stable due to the 

exclusion principle. In the Bose case the situation is unfamiliar and would 

be a disaster were it not for the fact tha t  we are dealing with a free i.e. 

non-interacting theory which does not allow transit ions from one vacuum 

to another. 

We can now define an infinite number of vacua [q), which can be viewed 

as Bose/Fermi seas, by requiring 
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bn[q) =0,  n > e q - A  
(13.48) 

cnlq)  = O, n > -eq + A 

where q E Z for the NS sector and q E Z + ½ for the R sector. Since in the 

fermi case the different vacua are distinguished by the occupation of a finite 

number  of states, we can go from one vacuum to another by application of a 

finite number of creation or annihilation operators. This is not so in the bose 

case. Here a finite number of operators will never bring us from one vacuum 

to another. The q-vacua are in fact identical to the states [q) = eq¢(°)[0) 

we have encountered before. It is straightforward to show that  they satisfy 

eq.(13.48). For instance, for bose statistics (e -- - 1 )  we have bn[q} "-- 

dz _~+ :,+q-~. e-¢(z) O~ ( z )eq¢(o) :10). f ~z'~+~-le-~(~)O~(z)e¢'(°)lo) = ~ ~ 
Eq.(13.48) then follows from regularity of the normal ordered product  at 

z = 0. We also see that  when acting with an operator in the NS sector 

(n + A=integer) on a state with half-integer q we get a branch cut. Hence 

these states belong to the R sector. From the expressions of jn and Ln in 

terms of modes of b and c it follows that  

J~lq) - L ~ lq )  - - O  , n > O. (13.49) 

The propagator receives a finite correction from the vacuum charge: 

( - q  - QIc(z)b(w) lq)  -~ (c(z)b(w)>q 

= ~ (-q-Ql[c- , , ,b, , l , lq)z-"-(x-~)w - ' - ~  
n<_~q-~ 

(z_  ~q 1 

- -  W ) Z - - W  
(13.5o) 

The conformal properties of the current j (z)  and the energy momentum 

tensor are also modified. Using above propagator we find 
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£ 
( j (z) j(W)}q -- ( z -  w) 2' 

Q q 
(T(z)j(w))q - ( z -  w)3 + z(z-  w)2, 

c b'c eq(Q + q) 
(T(z )T(w))q  -- 2(z - w) 4 q- z w ( z -  w) 2" 

Comparing this with eq.(13.26) and the T T  operator product gives 

zl_(j ) q (j(Z))q -- o q -  z '  

(T(Z))q - (Lo)q - -~eq(q + Q)--~ , 

i.e. 

(13.51) 

(13.52) 

J01q) = qlq>, 
(13.53) 1 

Lolq) = -~eq(q + Q)lq) • 

Eq.(13.53) also follows directly from eqs.(13.39) and (13.40). We see that 

the L0 eigenvalue is bounded from below for fermions (e + 1) and unbounded 

for bosons (e = -1) ,  in agreement with our discussion above. 

The SL2 invariant vacuum has h = 0. There are two states which 

satisfy this condition, namely [0} a n d [ - Q ) .  However it is easy to show 

that L_l[q> :it 0 for q ¢ 0; i.e. [0} is the unique SL2 invaxiant state. 

13.2 Covar ian t  ve r t ex  opera to rs ,  B R S T  and p i c tu re  changing  

Let us now apply the bosonization of the superconformal ghosts/3, 7 to the 

construction of the vertex operators of the fermionic string theory. As al- 

ready mentioned, the conformal fields of the NSR (¢/~) part of the fermionic 

string have to be completed by conformal fields of the f3, 7 system. This is 

in analogy to the bosonic string where physical states contain also ghost ex- 

citations. The fundamental reason for including the superconformal ghosts 

is again the requirement of BRST invariance of the physical states. We will 

see this in the following. 
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Let us consider states of the form [A)¢ ® [q)~,'r with corresponding vertex 

operators in bosonized form: 

Vx,q(z) = j x ' ¢ ( Z ) e q ¢ ( z )  (13.54) 

where ), is a weight vector of D 5 and the ghost charge q is a D1 "lattice 

vector". The conformal dimension of (13.54) is given by 

1 2  1 2  
h = ~ X  - ~ q  - q + g .  (13.55) 

(N counts possible oscillator excitations which we neglected in eq.(13.54).) 

The superghosts/3, 7 satisfy the same periodicity conditions as the world- 

sheet gravitino and therefore, due to the coupling of the gravitino to the 

supercurrent, the same boundary conditions as the NSR fermions ¢/~. This 

implies that  we must couple the R (NS) sector of the Ct~ system to the R 

(NS) sector of the superconformal ghost system. This is to say that for 

A E S, C of DS, q must be half-integer, and for ), E 0, V of DS, q is integer. 

Let us first look at the NS sector of the theory. Here, massless vectors 

are characterized by D 5 lattice vectors X = ( 0 , . . . , = k l , 0 , . . .  ,0) and the 

corresponding vertex operators have conformal dimension ½. Using formula 

eq.(13.55) we see that the full vertex operator eq.(13.54) describes a massless 

vector with h = 1 if the ghost charge of this state is chosen to be 

q = - 1 .  (13 .56)  

We will call this the canonical choice for the ghost number and NS vertex 

operators with q = - 1  are said to be in the canonical ghost picture. Thus, 

a general NS state in the canonical ghost picture is created by a vertex 

operator 

and has mass 

IRA,_ 1 (z) = eii~'¢(Z)e -¢(z)  :~ E O, V of D 5 (13.57) 

m2 1 2 1 2 1 2 1 (13.58) 
= - - q -  1 = - 
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Here we have again neglected oscillator contributions. The - 1  contribution 

to the zero point energy is due to the requirement that physical vertex 

operators have conformal dimension h = +1 or, from the point of view of 

Chapter 5, due to the reparametrization ghosts. Together with the 1 mass 

unit from the superconformal ghosts/3,7 one obtains the correct normal 

ordering constant, the tachyon mass in the NS sector. The ground state in 

the NS sector is thus e-¢c(0)]0). 

In the R sector massless spinors correspond to the weight vectors 

-t -1 +½, +½, +½, +½) with an even and odd number of minus signs "~ --" ( 2, 
for S~ and S& respectively. We now derive that the ghost charge q must be 

1 
q = - -  (13.59) 

2 

for the vertex operator eq.(13.54) of the massless spinors to have conformal 

dimension h = 1. Again, we call this the canonical ghost charge in the R 

sector. All vertex operators in this ghost picture are of the form 

1 
V x,_½(z)=ei~'¢(Z)e-~ ¢(z) ,x eS ,  C of D5 (13.60) 

m2 1 2 1 2 1 2 5 
= - - q - 1 = - 

with mass 

(13.61) 

Now consider operator products between two different vertex operators 

as given in eq.(13.54): 

VX,q(z)W'V,q,(W ) -- (z - -  w)X'"V-qq'vk+,V,q+q,(W) + . . .  (13.62) 

Since the ghost charges add, it is appareant that vertex operators in non- 

canonical ghost pictures appear in the operator product expansion. So let 

us discuss the meaning of states with arbitrary, non-canonical ghost charge 

q which are needed for closure of the operator algebra eq.(13.62). We will 

investigate this question using the BRST formalism. Thus, we have first 

to construct the BRST charge Q of the fermionic string theory. It gets 
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contribution from the fields X, b, c as well as from their superpartners ¢, 

/3, 7. Generalizing eq.(5.30) we get 

Q = f ~dz {c(TX, ¢ + ~Tb,c#3,~, ) _ ?(TX, ¢ + 21Tb'C'#"7"kF )1 

where 

= Qo + Q½ + Q: 

Qo = J ~ ( c T  xs''z'~ 

Q1 = - / 
dZ ~,TX,¢ 
2~i I F 

Q2 = -  
dz 1. 2 

J 

+bcOc), 

2 f ~e¢-xW, OX" 

j "  d z  1 .  2~._2 . 

7 

(13.63) 

(13.64) 

The subscript on Q denotes the superconformal ghost charge. Q0 is the 

bosonic BRST operator if we treat/3,7 as extra matter fields. Q1 generates 

world-sheet supersymmetry transformations with parameter given by the 

supersymmetry ghost 7. Finally, Q2 is needed for the closure of the BRST 

algebra. One easily works out the BRST transformations of the various 

(~3.65) 

fields. We find 

[Q,X~'(z)] 

{Q,¢~(z)} 

{Q,~(z)} 

[Q,7(~)] 

{Q,b(z)} 

[Q,/3(z)] 

[Q, Tt°t(z)] 

{Q,T}°t(z)} 

= cox.(z) -  ½v¢"(z), 

= ( ½ O c ¢ . ( z )  + cO¢.(~)) - ½7oZ.(z), 
= cOo(z) -  ¼72(z), 

= -~oc.y(z) + cO7(z), 

-- Tro t  (z)  

= -T~,°t(z),  

= ~(d- 10)03c(z), 

= i ( d -  10)027. 
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Here T t°t and T~ °t are the energy-momentum tensor and the supercurrent 

for all the fields involved. On the mat te r  fields Q acts as a combined confor- 

real t ransformation with parameter  c and a superconformal t ransformation 

with parameter  - %  One can verify that  Q2 = 0 for d = 10. 

Now consider the vertex operator for a massless spinor in the canonical 

q = - ½  ghost picture: 

V_½ (z) = uaSa(z)e-½¢(Z)e ik~'X~'(z). (13.66) 

ua is the spinor wave function. Let us first show that  V 1 is BRST invariant 

i.e. [Q,V !] vanishes up to a total derivative which is irrelevant upon 
2 

integration over z. First we have (cf. eq.(5.37)) 

[Q0, V_½] = O(cV_½). (13.67) 

Then, using eqs.(13.8) and (13.34) w i th  e = - 1 ,  we obtain 

i e -XTF(zlV_½ (w) ~ -  )-l( ul%e½ -xSa(wle k.x"(w). 

(13.68) 

Thus [Qx, V_½] = 0 if we demand tha t  ua satisfies the on-shell condition 

]~u = 0. Finally 

 2*-2Xb(z)K½( ) ~ ( z -  (13.69) 

shows that  [Q=, V_ !  ] -- 0. Therefore V ] is a BRST invariant vertex opera- 

tor. In general, BRST invariance of physical state vertex operators requires 

that  they satisfy on-shell conditions. 

However we can create a second version of the fermion vertex operator 

with different ghost number which is also BRST invariant. This operator is 

defined as 

V½ = 2[Q,(V_½]. (13.70 / 

The subscript ½ denotes that  this vertex operator now has ghost charge 
1 VI is obviously BRST invariant. One might think that  since V 1 is 2" 
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BRST invariant and ( has zero conformal dimension that (V  1 is itself 

BRST invariant. This is however not the case since the fl,7 algebra and 

consequently also Q only contain c3(, but not the zero mode of ~. We can 

then compute 3 

v½ = [Qo + Q, + Q:, 2¢v_½] (13.71) 

= 2a(c~V ~)+ ~u,~ 
1 ~¢-x Sa}eik'X + -~e 2 77 b 

The derivative term is the contribution from Q0 and the term with ghost 

charge -32 is generated by Q2. Both of these terms will never contribute 

to correlation functions (at least at tree level); the former vanishes upon 

integration over z and the latter contains one b field which will not be 

absorbed by a c field. Also note that  the zero mode of ( does not contribute 

to V+½, so its ghost part is also in the t3,7 algebra. Therefore we define the 

physical fermion vertex operator in the +½ ghost picture as 

V_(z) = 
2 

The operator 

[Q,, 2¢v_½(z)] 

= -2 ~ d~e~(~')-x(")TF(~)2~{ ex(')V_ _l(Z) 

- ' - 2  w--zllm e¢(W)TF(w)V_ _~ (z) 

P÷,(; .)  = -2e~(Z)TF(z )  = e~¢~'OX~,(z) 

(i3.72) 

(13.73) 

3In the derivation of eq.(13.71) we need the subleading term of the first of the operator 

products in eq.(13.8). One can show that in d dimensions 

for on-sheU ua. 
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is called picture changing operator. It carries one unit of ghost charge. 

Apart from the ghost part it acts like a two-dimensional supersymmetry 

transformation. 

In summary, the picture changing operation provides a second version 

of the fermion vertex operator, now in the ghost picture q = +21-. Moreover, 

one can use P+I to generate further, equivalent, and also BRST invariant 

vertex operators like 

or in general 

V3_(z)2 = w--.zlim P+l(w)t~(z)_ (13.74) 

Vq+ l ( Z ) = whmz P+l (w) Vq(z). (13.75) 

This equation states that vertex operators with ghost charges differing by 

integral units represent the same physical state. The different copies are 

said to be in different ghost pictures. The limit in eq.(13.75) always exists 

for BRST invariant vertex operators. There is a copy of any canonical vertex 

operator in every ghost sector. As a second example, picture changing of 

the vertex operator of the massless vector in the - 1  picture, 

V_l(z) = (~¢#(z)e-¢(Z)e ikpxp(z) (13.76) 

leads to its copy in the 0 picture: 

Vo(z) = - ( , ( c g Z "  + i ¢ ' ( k  . ¢))e//¢pXp(z). (13.77) 

For the tachyon we derive 

Vo(z) = - i k  . Ce ikÈX~'(z). (13.78) 

One can immediately check that the mass formula eq.(13.55) gives the same 

answer in any ghost picture. P+I, which has conformal weight 0, always 

acts in a way that the effect of changing the ghost charge q is compensated 

e.g. by oscillators cgXa or extra Ca factors. Thus the mass spectrum of 

the fermionic sting is in fact bounded from below unlike the spectrum of 
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the fl, 7 theory. The reason is that  only BRST invariant combinations are 

accepted as physical states. Also, the physical vertex operators, no mat te r  

in what ghost picture, never contain the zero mode of ~; i.e. they are always 

in the/3, 7 algebra. 

Note tha t  it follows from eq.(12.7) that  a NS field with zero supercon- 

formal ghost charge is BRST invariant if it is the upper component of a 

h = ½ superfield. The lower component is provided by the vertex operator 

in the canonical ghost picture (apart  from the factor e -e ) .  

The picture changing operation is important  for the evaluation of corre- 

lation functions. We have seen that  correlation functions in the SL 2 invari- 

ant vacuum will only be non-vanishing if we insert an operator with ghost 

charge q = - Q  = - 2 .  This means that  to get non-vanishing scattering 

amphtudes  we have to choose the ghost pictures for the vertex operators 

such that  the total superconformal ghost charge adds up to - 2 .  This is 

analogous to the situation we encountered when discussing the conformal 

ghosts in Chapter  6. There the vacuum carried three units of ghost charge 

and they had to be absorbed by ghost zero mode insertions. If we denote 

by cr the boson tha t  arises from bosonizing the conformal ghosts b, c and by 

¢ the boson from the/3, 3' system, we have 4 

<_Qb,c_ Q~,710 ) = (01e3a(0)-2¢(0)10) = 1. (13.79) 

BRST invariance of the states 10) and e3a(0)-2¢(0)10 ) is easy to verify. For 

instance, since in the critical dimension Q commutes with the Ln's (cf. 

eq.(13.65)), we find that  L0+IQI0> = 0. Since the SL2 invariant vacuum 

state is unique, we conclude QI0} - 0. Invariance of e 3a(0)-2¢(0) 10> is shown 

by computing [Q, e3Cr(°)-2¢(°)]. Hence the vacuum expectation values of 

BRST invariant operators will be BRST invariant. 

4If we include the zero mode of the q, ~ system, we also have to neutralize its hack- 

ground charge and get (0[e3¢-2¢+x[0) --- 1. ea¢-2~b+x[0) is however not BRST 

invariant. 
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It is now impor tan t  that  correlation functions of physical vertex opera- 

tors are independent  of how we distribute the ghost charges among them as 

long as ~i  qi = - 2  (at tree level, say). The reason is the following. Since 

none of the vertex operators depends on the zero mode ~0, we can insert it in 

the functional integral and integrate over it; i.e. we insert 1 = f d(0~0. Since 

~0 is a Grassmann variable, we can replace it by ~(z) for arbi trary z. (This 

follows from f :D~'d~o~oF(~') = f T)~'d~0 ~(z)F(~') where ~' denotes the 

non-zero mode part  of (.) So we can attach ~(z) to any of the vertex opera- 

tors in the correlation function, say to Vql (Zl). Now rewrite any of the other 

vertex operators, say Vq2(Z2 ), as Vq2(Z2 ) = 2 f ~(W)jBRST(W)Vq2-1(Z2)" 
We deform the integration contour by pulling it off the back of the sphere. 

Due to BRST invariance it passes through all vertex operators except for 

((zl)Va~(zl) which becomes Vqa+~(zl ). Then J ' d ( 0 ( ( w ) =  1. In summary, 

we have traded one unit  of ghost charge between two vertex operators within 

a BRST invariant correlation function without changing its value. 

13.3 T h e  c o v a r i a n t  l a t t i c e  

Let us now return to the operator product  expansion eq.(13.62). It strongly 

suggests to combine the D 5 weight vectors A with the D1 weights q to a 

six-dimensional vector w = (),, q). We can now write the operator algebra 

a s  

V w l ( Z ) V w 2 ( w )  = (Z -- w)Wl" tv2Ywl+ ,W2(w)  + . . .  (13.80) 

Closure of the algebra implies that  wl, w2 are vectors of a six-dimensional 

Lorentzian lattice Dh, 1 with metric signature (+ + + + + , - ) .  The minus 

sign is due to the ghost sector. This enlarged Lorentzian lattice is usually 

called covariant lattice since it describes the covariant vertex operators of 

the fermionic string. Since the only allowed vectors of Dh, 1 decompose 

under D 5 ® D1 as w = (A;q): where A and q both  belong to either the 

278 



NS sector or both to the R sector, the lattice D5,I contains four conjugacy 

classes: 0, V, S and C. 

Now consider the weights of Dh,1 which correspond to the states of 

lowest mass in the canonical ghost picture: 

Wtachyon = (0, 0, 0, 0, 0; - -1)  

Wvector - -  ( 0 , . . . , q - l , 0 , . . . , 0 ;  - -1)  

1 1 1 1 1 Wspinor=(+ ,~,±~,!~,+~,-~) 
1 1 1 1 1 

Wantispinor -- (-F~,-E~, 4-~,=k~, =E~;-5) 

E V of Dh, 1 

E 0 of Dh j  

E C of Dh j  

S of Dh j  

odd. number of 
mlnus slgns 

even number of 
minus signs 

(i3.811 
We recognize that for states in the canonical ghost picture, all vectors in 

the V (S) conjugacy class of i95 belong to the 0 (C) conjugacy class of Dh,1 

and vice versa. The decomposition of the conjugacy classes of Dh,1 into 

those of D 5 ® D1 is given in table 13.2. 

Table 13.2 Decomposition of Ds,1 conjugacy classes 

Dh,i 

0 

V 

S 

C 

D5 ® D1 

(v, v) • (0, 0) 
(v,0) e (0,v) 
(s,s) e (c,c) 
(c,s) e (s,c) 

The mass of a state lw) can be written in terms of lattice vectors of D5,1 

as (remember the negative metric of this lattice) 

= 2 w2 + w. e6 - 1 (13.82) m 2 

where e8 is the basis vector (0, 0, 0, 0, 0; 1). From the discussion above we 

understand the meaning of lattice vectors with different ghost charge q. 

They all correspond to copies of the same physical state but in different 

ghost pictures. However there is no one-to-one relation between Dh,1 lattice 
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vectors and physical states. Only states in the canonical ghost picture are 

directly related to lattice vectors of D5,1. In other ghost pictures there 

is no clear relation between lattice vectors and physical vertex operators. 

These are in general given by linear combinations of vertex operators of 

the form eq.(13.54). E.g. the relevant D5,1 lattice vectors for the massless 

vector in the 0 picture are the null vector and the vectors (a; 0) where 

is a root of D 5. The picture changing operation does not change the D5,1 

conjugacy class of a state. This is so because the picture changing operator 

P+I corresponds to the D5,1 lattice vector 

= (0, . . . ,  + 1 , . . . ,  0; +1) (13.83) 

which is a root of D5,1. Picture changing acts on the lattice D5,1 by simply 

adding wpc. 

Let us return to the question of locality, i.e. absence of branch cuts 

in the operator product algebra of the fermionic string. The exponents of 

(z - w) are determined by the inner product rules of conjugacy classes of 

the Lorentzian lattice Ds,1 which are summarized in table 13.3. 

Table 13.3 Mutual scalar products of Ds,1 conjugacy classes 

0 

V 

S 

C 

0 V  S C 

Z Z Z Z 
1 Z Z + ½  Z + ~  

Z Z + ½  

Z 

We recognize that we have almost reached our aim to obtain a local theory 

by extending D 5 to D5,1. The massless spinor (E C of D5,1) is now local 

with respect to the massless vector (E 0 of D5,1). The branch cut in the op- 
1¢w 

erator product 'g,~(z)Sa(w) is cancelled by the branch cut in e-C(Z)e-~ ().  
However there are still some sources of non-locality. The tachyon (E V of 
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D5,1) is non-local with respect to the spinor (and also to the antispinor) 

and also the spinor is non-local with respect to the antispinor (E S of D5,1). 

Thus a projection is needed which eliminates half of the conjugacy classes 

of D5,1 and makes the theory local. We see that the NS sector with 0 and 

V of D5,1 leads to a local, closed operator algebra as well as the projec- 

tion onto the 0 and C (or equivalently S) conjugacy classes of Dh, 1. The 

latter projection is identical to the GSO projection introduced within the 

fermionic formulation of the spinning string. It leads to a space-time su- 

persymmetric spectrum; the 0 and C conjugacy classes contain each others 

supersymmetric partners. 

We now show that this projection on the lattice D5,1 with 0 and C 

(or S) conjugacy classes is enforced by modular invariance of the one loop 

partition function of the fermionic string. This is in complete analogy to the 

fact that in the fermionic language the GSO projection was necessary when 

summing over a modular invariant combination of different spin structures. 

The holomorphic part of the one loop partition function of the fermionic 

string in Hamiltonian description has the form 

X(r) ~ Tre2~ri~'(Lo-1)¢. (13.84) 

~5 is a phase factor which takes into account the correct space-time statistics, 

i.e. ~ is 1 for space-time bosons and - 1  for space-time fermions. Let us 

first discuss the non-trivial part of eq.(13.84), namely the contribution of 

the zero modes of the bosons ¢i (i = 1 , . . . ,  5) and ¢. They just give the 

sum over the lattice vectors of the Lorentzian lattice D5,1: 

= ½q2-q)e-2 iq. ( 1 3 . 8 5 )  

w=( A,q)E Dh,~ 

The factor e -2~riq e n s u r e s  just the correct space-time statistics using the 

fact that q is (half) integer for space-time bosons (fermions). 

However this expression for )~(r) cannot represent the physical parti- 

tion function since the sum extends over arbitrarily high ghost numbers q. 
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In other words, eq.(13.85) sums over all possible equivalent ghost pictures. 

In addition we know also that  the physical (light-cone) parti t ion function 

should only Count the transverse degrees of freedom. In the covariant lattices 

language these physical light-cone states in the canonical ghost picture can 

be characterized by decomposing D5,1 to a part  which describes the trans- 

verse Lorentz group SO(8) and a two-dimensional part  which describes the 

longitudinal, timelike and ghost degrees of freedom of any state: 

D 5 , l - D 4 ® D l , 1  , w - - ( u , = ) ,  
(13.86) 

w cD5,1, u E D4, x E D1,1. 

Then the physical state condition is to consider lattice vectors w = (u, ~) 

with fixed vector ~o in the following way: 

~0 = ( 0 , - 1 )  NS sector, 
(13.87) 

x 0 = (  1, ~) Rsec to r  

The trace in the parti t ion function should then go only over those states 

satisfying eq.(13.87). To realize this constraint let us write a general vector 

w E D5,1 in a convenient form 

w = (u, =0) + ~ = wo + a (13.88) 

where zx is the sum of two light-like (picture changing) vectors: 

A = m z l  1 -t- n z ~  2 , 

z~ 1 --(0,0,0,0,1,1), (13.89) 

= (0 ,0 ,o ,  1,o, 1).  

Substituting eq.(13.88) into eq.(13.85) we are left with the following expres- 

sion: 

= 2 iw0 6 (13.00) 
w o  zi  

where we have shifted ,a without affecting the infinite sum. The first part  is 

simply the trace over all physical states. Therefore, to obtain the physical 

light-cone parti t ion function, one has to divide :~(r) by 

282 



6)1,1(~') = E e~rirzl2" (13.91) 
A 

(91,1 is the parti t ion function of the two-dimensional Lorentzian even self- 

dual lattice D1,1. Although the two functions O1,1(r) and :~(r) are sepa- 

rately ill defined because of the Lorentzian metric, their ratio is nevertheless 

well defined and describes the physical partition function. Finally we also 

have to take into account the contribution of the bosonic X and ¢ oscilla- 

tors. Then the complete (purely holomorphic) result is: 

1 e27rir½(w+e6)2e27riw'e6. (13.92) 
~ E 

 eD ,i 

Let us now check the modular invariance of X(~-). First consider the 

t ransformation ~- --+ r + 1. Since T](T) 12 changes sign under this transfor- 

mation while O1,1(7") remains invariant we require that  the lattice sum also 

changes sign. This implies that  states with (half) integer q corresponding to 

(R) NS states have to be associated with (odd) even points on the lattice: 

1 2 
~w - q  e Z. (13.93) 

This is also what  the spin statistics theorem demands. The operator product 

between vertex operators in the NS (R) sector (¢ = ( ¢ ; - i ¢ )  is 

eiW4'(Z)e - iw'~(w)  ,~ (z - w) -w2 + . . .  (13.94) 

NS (R) states have to be (anti) commuting, i.e. w 2 = 2n (w 2 = 2n + 1), 

n E Z. It is easily checked that  all vectors in the S, C and V conjugacy 

classes of D5, I have odd (length) 2 whereas the vectors of the 0 conjugacy 

class have even (length) 2. Thus, requiring invariance under r --~ r + 1 

discards the V conjugacy class. 

1 we use that  For the second transformation, v --~ - ~  

u - l ( r  ) --- (--i7-11/277-1(_~) ' 
(13.95) 

= - . -  
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The second relation follows since ¢91,1 is the lattice sum of the even self-dual 

lattice DI,1. Using now the Poisson resummation formula of Chapter 10, 

we find 

2~rl 1 (w~e6"~2 7" 4 1 E e - - K - ~  ) e -27riw'e6. 
x O ) -  vol(Ds,1) .12 1 

(13.96) 

Thus, apart from a factor e 47riq, which is irrelevant for q only integer or 

1 if the covariant lattice D5,1 half-integer, X(r) is invariant under r ---, - ~  

is self-dual. (The factor ~.4 will be compensated by the transformation of 

(Imp-)-4 (of. eq.(10.44).) 

In summary, modular invariance imphes that D5,1 must be an odd self- 

dual Lorentzian lattice which contains only the 0 and S (or 0 and C) con- 

jugacy classes. Then the spinning string is automatically local as discussed 

above. These two conjugacy classes contain as lowest states a massless 

vector and massless spinor. They build the on-shell degrees of freedom of 

a ten-dimensional supermultiplet and one can show that also the massive 

states can be arranged into supermultiplets. Thus the requirement of self- 

duahty of the covariant lattice D5,1 is equivalent to the GSO projection. 

The covariant lattice description also allows for a straightforward deriva- 

tion of the hght-cone partition function of the fermionic string in terms of 

Jacobi theta functions. Since the lattice D5,1 contains the 0 and S conjugacy 

classes, the hght-cone partition function is given by the difference between 

the lattice sums of the V and C conjugacy classes of the D 4 weight lattice. 

The V E D4 conjugacy class is obtained from the 0 E D5,1 by truncation 

to hght-cone states according to the physical state selection rule eq.(13.87). 

Likewise this gives C E D4 from S E D5,1. The relative minus sign takes 

into account spin-statistics. Thus, using the expressions eq.(ll.101) for the 

sums over the lattice vectors of the Dn-weight lattice, the contribution of 

the world-sheet fermions to the hght-cone partition function becomes: 
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1 1 
X(T) ~ 2 q(T)4[0~(0lr)- 04(0I t ) -  024(0l~-)]. (13.97) 

This expression is identical to the one obtained from the sum over all 

spin structures of the world-sheet fermions in the fermionic description (see 

Chapter 9) and vanishes due to the triality relation among the V, C and S 

conjugacy classes of D4 encoded in the first of the identities in eq.(9.11). 

This reflects the underlying space-time supersymmetry: the contribution of 

space-time bosons and space-time fermions cancels. 

The covariant Lorentzian lattice Dh, 1 with 0 and S conjugacy classes is 

very similar to the root lattice of E 8 which can also be thought of being the 

weight lattice of D8, again with 0 and S conjugacy classes. In both cases 

the restriction to these two conjugacy classes implies self-duality. There- 

fore, due to this analogy, we may call the self-duM lattice D5,1 also E5,1. 

Both, E 8 and E5,1, contain spinorial generators which, for E8, correspond 

to length 2 = 2 vectors and commute; for E5,1 however they correspond to 

length 2 = 1 vectors and therefore anticommute. They generate the space- 

time supersymmetry algebra (cf. the discussion in the next chapter). In 

fact, it turns out to be useful to consider instead of the Lorentzian lattice 

Eh, 1 the Euclidean covariant lattice E8. This is equivalent to replacing the 

superconformal ghost lattice D1 by a D 3 lattice while simultaneously chang- 

ing the signature of the metric of the lattice. 5 In other words, we replace 

the Lorentzian covariant lattice Dh, 1 by the Euclidean covariant lattice D 8. 

The requirement of modular invariance implies in both cases that only the 0 

and S conjugacy classes must be present such that we are dealing with the 

lattices Eh, 1 resp. E 8. To describe the states in the canonical ghost picture 

we are forced to decompose E8 (D8) to DL°reatz® r~gh°st and consider only 5 "-'3 
vectors of D gh°st with fixed entries. Conventionally we choose them as 

5These lattice maps will be discussed in more detail in the next chapter. 

285 



w = (u,v) e D8 , 

1 1 1 
v 0 = ( 2 ,  2, 2 ) , 

g0 = (0,  O, - 1 )  , 

u E D~ °rentz , 

R sector, 

NS sector. 

v E D3 gh°st , 

(13.98) 

Note that  1 2 ~v 0 is exactly the superconformal ghost contribution to the con- 

formal weight in the canonical ghost picture. Furthermore, if we are only 

interested in the physical light-cone states we have to decompose D 8 to 

D4 ® D4 and consider states which have fixed entries in second D4: 

(2 1 1 ~) Rsector  
xO "- ' 2 ~ 2 '  (13.99) 
x0 -- (0 ,0 ,0 , -1 )  NS sector. 

This means that  we have replaced the Lorentzian lattice DI,1, which de- 

scribes the longitudinal, timelike and superconformal ghost degrees of free- 

dom, by the Euclidean lattice D4. The physical light-cone partition func- 

tion can now be written as a lattice sum over the D s (Es) lattice counting 

only those vectors satisfying eq.(13.99) and taking into account the correct 

spin statistics assignment. Since under D8 --* D4 the conjugacy classes 

are interchanged according to V .-~ 0 and S *-* C, the truncation to phys- 

ical light cone states acts on the theta functions as 88 --~ 84, 848 --~ -84 

and 828 --. -84.  Given the known expression for the E 8 partition func- 
1 1 t ion,  XEs( r )  ~ ~7/--~-~[88(01r) + 88(01r) + 848(01r)] one i m m e d i a t e l y  derives 

eq.(13.97) as the physical light-cone partition function. (Note that  one also 

has to drop the contribution of four oscillators.) At this point it is impor- 

tant to realize that  the replacement of the Lorentzian lattice D5,1 by the 

Euclidian lattice D 8 does not mean that the non-unitary ghost Hilbert space 

is contained in the positive definite Hilbert space of the D 8 Kac-Moody al- 

gebra. So far this procedure is just a convenient technical trick since the 

Euclidean lattices are much nicer to handle. Both descriptions lead, with 

the conditions eq.(13.87) and eq.(13.99) respectively, to the correct light- 

cone degrees of freedom. 
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Chapter 14 

H e t e r o t i c  Str ings  in Ten and Four D i m e n s i o n s  

In this chapter we present constructions which describe string theories in 

four space-time dimensions. It should be clear from the beginning that 

these are the only string theories consistent with our empirical observation 

of living in four (almost) flat space-time dimensions and that only they have 

a chance to make contact with low-energy phenomenology. 

14.1 Ten-d imens iona l  he te ro t ic  s t r ings  

As a warm-up exercise let us first study ten-dimensional heterotic strings in 

the covariant lattice description. In Chapter 10 we have discussed the orig- 

inal version of the heterotic string which has a space-time supersymmetric 

spectrum and gauge groups ES x E 8 or SO(32). Subsequently, additional 

heterotic string theories were discovered in [1, 2] and reformulated in the 

covariant lattice approach in [3, 4]. 

The holomorphic (right-moving) fermionic string in its bosonized ver- 

sion is characterized by the lattice (Ds,1) R corresponding to the world- 

sheet fermions ¢~'(z) and superconformal ghosts j3, 7. The lattice vectors 

wn = (An, q) E D5,1 describe the Lorentz transformation properties and 

superconformal ghost charge of the right-moving part of any string state. 

To obtain the heterotic string theory we have to combine the right-moving 

fermionic string with the left-moving bosonic string. As discussed in Chap- 

ter 10, it consists of ten bosonic space-time coordinates X~'(5) and, in ad- 

dition, of 16 "compactified" bosonic variables X I ( 5 ) ( I - -  1, . . . ,16) .  The 
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corresponding quantized momenta build a 16-dimensional Euclidean lattice 

(F16)L whose lattice vectors we denote by wL. Thus the (soliton) vertex 

operators of the heterotic string theory have the general form (neglecting 

contributions from bosonic oscillators): 

VwL;.~n,q(2 , z) = eiWL'X(~')ei)~n'¢(Z)eq¢(z) .  (14.1) 

Here and in the following we have dropped normal ordering symbols and 

cocycle factors. The operator product expansion of two such vertex opera- 

tors 

VwL1;~RI,ql  ( 2' z )  VwL2;)'n2,q2 (W' w)  (14.2) 

-- (~-~)  ~'~2cz-w~;'R~:~R2-q~q2w~ J ~L~ +~L2 ;~R~ +~R2,q~ +q~ ( ~ ' w )  + """ 

shows that the condition for locality, i.e. the absence of branch cuts, reads 

--WL 1 • WL 2 + AR 1 • AR 2 -- qlq2 E Z. (14.3) 

This suggests to combine the 16-dimensionM left-moving lattice 1"16 and the 

six-dimensional right-moving lattice D5,1 to a Lorentzian lattice 

F16;5,1 = (/"16)/; ® (Dh,1)R (14.4) 

(the semicolon separates left- from right-movers) with lattice vectors w = 

(WL; An, q) where the inner product wl • w2 is defined with the metric 

diag[(-1)16, (+1)5, (-1)]. Locality demands that  this lattice be integral 

with respect to this Lorentzian metric. 

Combining the left- and right-moving sectors, the partition function of 

ten-dimensional heterotic string theories is essentially given by the sum over 

all lattice vectors of F16;5,1: 

X(2, r) = Tr e- iTr~(L°- l )e iTr~ ' (L°- l )q  b (14.5) 

_ (Imp-) -4 
- q24(~)~12(r)O,,,(r) 

wE-F16;5,1 
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Again, as in the fermionic string theory, modular invariance forces F16;5,1 
to be an odd self-dual Lorentzian lattice. This can be proven by Poisson 

resummation. 
The requirement of self-duality can be trivially satisfied if both (F16)L 

and (Ds,1) R are self-dual separately, i.e. /"16;5,1 is a direct product of two 

self-dual lattices of which (Ds,1) R must be odd. Then (F16)£ must be either 

the root lattice of E8 × E8 or the weight lattice of Spin(32)/Z2 implying 

E s ×E  8 or SO(32) as the two possible gauge groups. On the other hand, self- 

duality of (D5,1) R implies that the spectrum is space-time supersymmetric 

in ten dimensions. 
However this is by far not the most general case - it is possible to obtain 

a self-dual lattice F16;5,1 without selfdual sublattices (F16)L and (D5,1) R. 

Then eq.(14.4) does not represent a direct product decomposition. Instead, 

/"16;5,1 is specified by non-trivial correlations between the various conjugacy 

classes of (F~6)L and (D5,1)R given by the glue vectors as explained in 

Chapter 11. Thus, in this case there is a non-trivial interplay between the 

left- and right-moving degrees of freedom. This implies that in the fermionic 

description of the right-moving spinning string the GSO projections have 

to be modified. This destroys space-time supersymmetry. Analogously, the 

left-moving gauge group will be different from E 8 x E 8 or SO(32). 

Let us classify all possible odd self-dual lattices F16;5,1 which lead to a 

sensible heterotic string theory in ten dimensions. In general, the classifi- 

cation of Lorentzian self-dual lattices Fp,q of a given dimension and metric 

diag[(-F1)P, ( -1)  q] is meaningless since they are unique up to Lorentz rota- 

tions in B2,q. However, if we add the requirement of having a sensible space- 

time interpretation, a classification becomes possible. Because of Lorentz 

invariance all states are classified (off-shell) according to SO(10) represen- 

tations and we have to demand that (D5,1)R builds the right-moving part 

of F16;5,1. The non-trivial question is now how the four conjugacy classes 

0, V, S and C E (D5,1)R are coupled to the conjugacy classes of F16. 

290 



We analyze this problem by converting the Lorentzian lattices into Eu- 

clidean ones. Any even self-aluM lattice consisting of one or several Dr, 

factors can be replaced by another even self-dual lattice by changing the 

dimension of any Dn factor by multiples of eight and keeping all conjugacy 

classes the same, i.e. Dn ~ D,z+p8 (p E Z). Such a transformation changes 

the (length) 2 of all vectors only modulo 2 and all mutual  scalar products 

modulo 1, so tha t  it does not affect self-duality. For example, the self-dual 

lattice D8 with 0 and S conjugacy classes (i.e. the E 8 root lattice) can be 

mapped to the D16 weight lattice with the same conjugacy classes which is, 

as we know from Chapter  11, the self-dual weight lattice of Spin(32)/Z2. 

On the other hand,  changing the dimension by multiples of four, maps an 

even self-dual lattice to an odd self-dual lattice and vice versa. Finally, one 

may even subtract  multiples of eight or four to make the dimension of a 

Dn factor negative. This can be interpreted as change of signature, i.e. as 

a map of an Euclidean self-dual lattice to a Lorentzian self-dual lattice or 

vice versa. This is what happened in the previous chapter; when we re- 

placed DS, 1 (E5,1) by D 8 (E S) - we changed the dimension by minus four 

units, thus converting an odd self-dual Lorentzian lattice to an even self-dual 

Euclidean lattice. The reason for doing so is the possibility of classifying 

Euclidean lattices as discussed in Chapter  11. 

We are now ready to apply these techniques to the lattice F16;5,1 which 

describes the heterotic string theories in ten dimensions. First we map 

(Ds,1) R to (D8) R obtaining the Lorentzian even self-dual lattice F16;8 -- 

(F16)L®(D8) R. This lattice can in turn be mapped to those 24-dimensional 

Euclidean even self-dual lattices F24 which can be decomposed as 

/24 = C16 ® O8. (14.6) 

Thus, our Mm is to find all even self-duM Euclidean 24-dimensional lat- 

tices which allow for this decomposition. Each solution will be completely 

specified by the Lie algebra lattice 1"16 together with the glue vectors to D 8. 
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In table 11.3 we have listed all possible even self-dual lattices of di- 

mension 24, the so-called Niemeier lattices. Seven of them contain D s as 

regular subalgebra and therefore lead to a heterotic string theory in ten 

dimensions. These are displayed in the first column of table 14.1. They 

lead to eight different heterotic string theories since D 8 can be embedded 

in two different ways in E 8 ® D16. In all the other cases there is only one 

possible regular embedding of D 8. The algebras which commute maximally 

with D8 build the left lattice F16 and are displayed in the third column of 

the table. The appearing conjugacy classes of/'16 as well as their coupling 

to the D 8 conjugacy classes are shown in the last four columns. 

The root vectors of/"16 give rise to massless gauge bosons of the het- 

erotic string theory and the corresponding gauge group, which is of course 

always of rank 16, can be read off from the third column of the table. We 

recognize that the first two models are the two original supersymmetric 

heterotic string theories. Here ]"16 is self-dual and so is D 8 which is thus 

the root lattice of E8. All other theories are not supersymmetric. Only 

one other model, the last one in the table, is tachyon free and has gauge 

group SO(16) × SO(16). In all models the tachyon, if present, comes from 

the V conjugacy class of (D8) R. For the SO(16) x SO(16) model, however, 

the V conjugacy class is coupled to the (V,S) and (S,V) conjugacy classes 

of (D 8 ® DS)L. The lowest states within these two conjugacy classes have 

m~ = ½ such that  the right-moving tachyonic state with m 2 = -½ does 

not satisfy the left-right level matching constraint. In the five remaining 

non-supersymmetric models it does. 

In summary, via bosonization one obtains eight different modular invari- 

ant heterotic string theories in ten dimensions. There exists one additional 

tachyonic model with rank eight gauge group E 8 which cannot be described 

within the covariant lattice formalism. The reason is that this model in- 
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Table 14.1 Ten dimensional heterotic strings 

Niemeier lattice Heterotic string 

roots weights algebra Ds-sector 

(o) (v) (s) (c) 
S~ (0, 0, o) 
Es × Dis (0, S) 
E 8 X D16 (0, S) 

D24 (S) 

D~ Iv, s] 
(c ,c)  

DlO × E 2 (S, 1, 0) 

(c,o,1) 
(v,1,1) 

D9 x A15 (S,4k + 2) 

(0,4k) 

D~ [S,V,V] 
[c,o,c] 
(s,s ,s)  

z8 × s8 (0,0) - (0,0) - 

o16 (0),(s) - (0),(s) - 

E8 × D8 (0,0) (0,V) (0,S) (0, C) 

O16 (0) (V) (S) (C) 
D4 × D12 (0,0) (V,0) (S,V) (S,C) 

(V,S) (0,S) (C,C) (C,V) 
D~ × E~ (0, 0, 0) (V, 0, 0) (S, 1,0) (C, 1,0) 

(V, 1,1) (0,1,1) (C,0,1) (S,0,1) 

DlxA15 (0,4k) (V,4k) ( S , 4 k + 2 ) ( C , 4 k + 2 )  

Ds × D8 (0,0) (S,V) (V,V) (C,0) 

(C,C) (V,S) (S,S) (0,C) 

volves real fermions with different spin structures which however cannot 

be bosonized with the methods described in Chapter 11 and therefore do 

not lead to a covariant lattice. For lattice models, the Kac-Moody algebra 

corresponding to the gauge group is always at level one. The theory with 

gauge group E 8 has a E8 Kac-Moody algebra at level two and can thus not 

be represented by free bosons in the way described in Chapter 11. 

14.2 F o u r - d i m e n s i o n a l  h e t e r o t i c  s t r i ngs  in t h e  covar ian t  l a t t i ce  

a p p r o a c h  

It is now straightforward to generalize this method of using bosonic covari- 

ant lattices to construct chiral heterotic string theories also in four space- 
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time dimensions. The covariant lattice construction of four-dimensional 

heterotic strings was first discussed in [5]. A comprehensive review of this 

construction scheme is given in reference [6]. We should emphasize, how- 

ever, tha t  this is not the only way to obtain four-dimensional heterotic string 

theories. The first "realistic" proposal in the context of four-dimensional 

string theories is the compactification of the ten-dimensional heterotic string 

on Calabi-Yau manifolds [7]. This corresponds in general to a highly non- 

trivial conformal field theory not immediately related to free fields. Soon 

after the so-called orbifold construction [8] was considered where one uses 

free bosons with twisted boundary conditions. Finally, in the fermionic con- 

struction [9, 10] one uses only free world-sheet fermions. All these construc- 

tion schemes have in common that  they can lead to chiral fermions unlike 

the simple toroidal compactification. An overview and further references 

about four-dimensional string theories can be found in [11]. In the next 

section we will discuss some general features of four-dimensional heterotic 

strings which are independent of the way they are constructed. 

Going from ten to d dimensions only d bosonic fields X~(5,  z) (# = 

1 , . . . ,  d) play the role of space-time coordinates. The d-dimensional center- 

of-mass momenta  k~, which are canonically conjugate to the center-of-mass 

positions, have continuous eigenvalues. We are left with 26 - d left-moving 

bosonic fields ZZ(5) ( I  = 1 , . . . 2 6 - d )  and 1 0 - d  right-moving fields XJ(z)  

( J  = 1 , . . .  1 0 -  d). For these variables we assume tha t  the holomorphic and 

antiholomorphic fields move independently on a (26 - d)-dimensional left 

and a (10 - d)-dimensional right torus respectively. This implies that  the 

corresponding momentum eigenvalues wL, WR are quantized and generate 

a 26 - d dimensional lattice (-/'26-d)L and a 10 - d dimensional lattice 

(FlO_d) R. (For general choice of background values of the underlying torus 

the left- and right-moving momenta  do not necessarily build a lattice. We 

will however discard this case for simplicity.) 
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Following our strategy of "maximal bosonization" we replace the ten 

right-moving world-sheet fermions CZ(z) (I = 1 , . . . ,  10) by five free bosonic 

fields. However only d (d even) of these fermions are the two-dimensional 

world-sheet superpartners of the bosonic coordinates Xl~(z). These d 

fermionic fields generate a level one SO(d) Kac-Moody algebra which cor- 

responds to the Wick rotated Lorentz group SO(d- 1, 1). Via bosonization 

these d fermions ¢#(z) are replaced by ~ bosons ¢i(z) (i = 1 , . . . ,  ~). To 

obtain a sensible space-time interpretation we have to insist that the corre- 

sponding zero mode momentum vectors are elements of the weight lattice 

of the Lorentz group SO(d)" .~R C Dd_. Then, just like in ten dimensions, 
2 

states in the R sector are characterized by AR E S,C of Dd. These states 

are d-dimensional fermions. The NS sector with d-dimensional space-time 

bosons is obtained from )'R E 0,V of D~. 

As before, we also bosonize the superconformal ghosts by introduc- 

ing a free boson ¢(z). The ghost charge is either half-integer or integer. 

The canonical choice for space-time fermions is q = -½ and for space-time 

bosons q = -1 .  Again, we combine the D1 ghost lattice with the SO(d) 
weight lattice Dd to form the covariant lattice D~, 1 with lattice vectors 

(.XR, q) and signature ( (+1)~,-1) .  

Thus we are now left with 1 0 -  d additional, internal world-sheet 

fermions C J ( z ) ( J  = 1,. . .  ,10 - d) which we replace by ½ ( 1 0 - d ) b o s o n s  

el(z) (i = 1 , . . . ,  1(10 - d)). Now, for these bosons it is not necessary that 

the corresponding bosonic momenta ~ are vectors of a D5_~ lattice since 

we have given up the notion of ten-dimensional space-time. We are treating 

these fields, just like the bosons XJ(z), as internal degrees of freedom which 

are needed to ensure conformal invariance, i.e. the vanishing of the central 

charge of the Virasoro algebra. So let us denote the lattice with vectors 5, by 

F5_ ~. In fact, there is no reason to treat XS(z) and (hi(z) differently. The 

distinction between compactified bosons and bosonized internal fermions is 
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meaningless. Let us therefore combine the internal right-moving bosonic de- 

grees of freedom to X R ( z )  = (Xl (z ) , . . .  , X l ° - d ( z ) , ¢ l ( z ) , . . . , ¢ 5 - d ( z ) )  with 

corresponding momentum vectors wR -- (w~,. . .  , wl°-aR , ~1,.. ., ~5- ~d ); they 

build a ( 1 5 -  ~d)-dimensional lattice (F15_~d) R -- /~10-d ® F5_d. 

We would like to emphasize that the d-dimensional heterotic string con- 

structed in this way cannot, in general, be regarded as a compactification 

of the 10-dimensional heterotic string in the sense that the string is mov- 

ing on a (10 - d)-dimensional internal compact manifold, even when taking 

into account possible background fields. This is due to the asymmetric 

treatment of the left- and right-moving fields and also to the fact that we 

did not treat the internal bosonized world-sheet fermions and compacti- 

fled bosons in any different way. On the contrary, these theories provide, 

in general, truly four-dimensional string theories where only d bosons and 

world-sheet fermions play the role of (flat) space-time coordinates and their 

two-dimensional superpartners. The other bosonic fields are only needed 

to cancel the conformal anomaly and could be replaced by a more general 

internal conformal field theory (see next section). 

The covariant vertex operators of the d-dimensional string states can 

be written as (neglecting bosonic oscillators and space-time momentum de- 

pendence): 

VwL;wR,AR,q(Z,  Z) -- eiWL'XL(~)eiWa'XR(Z)eiAa'ek(Z)e q¢(z) (14.7) 

The conformal dimension of this operator is given by 
1 

(14.8) 
1 2  1 2  1 2  

h = hR "- -~WR "b -~AR -- -~q - q" 

It follows that the mass of a d-dimensional string state created by this vertex 

operator is given by the following expressions where NL and NR count the 
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number of left-and right-moving space-time as well as internal oscillators: 

m2L = 1  2 ~wL + NL - 1, 

1 2 ~,~_~q ~ : ~w" + 1 2 - q + N . -  1, (14 .9)  

+ 

Physical states have to satisfy m 2 = m 2. The operator product expansion 

between two vertex operators eq.(14.7) reads: 

YwL 1 ;WRl,,~Rl,ql (z,  Z)V.wL2;WR2,,~R2,q 2 ('U), W) (14.10) 

: (2 -- ~)WLI"WL2(z  -- W) wRI"wR2+ARI"AR2-qlq2 

X VWLI+WL2;WRI+WR2,.,~R1..i.~R2,ql..}.q2('t~ , W) -Jr" . . .  

It follows, in complete analogy with the heterotic string theories in ten 

dimensions, that  it is convenient to combine (WL; WR, .XR, q) to form vectors 

of a (42 -- 2d)-dimensional Lorentzian lattice F26_g;15_d, 1 -- (F26_d) L ® 

(F15_~ d ® D~,I) R. Again, modular invariance of the partition function 

forces F26_d;15_d, 1 to be an odd self-dual Lorentzian lattice. 

For an odd self-dual lattice F26_d;15_d, 1 to represent a physically sensi- 

ble heterotic string theory additional constraints have to be imposed. One 

requirement, namely that all states are classified according to representa- 

tions of the Lorentz group SO(d), is already satisfied if we demand that 

(Dd,1) R is part of F26_d;15_d, 1 . This requirement was essentially sufficient 
2 

to classify all heterotic string theories in ten dimensions. However in lower 

dimensions this is not the end of the story. Remember that  for decoupling 

of ghosts the right-moving fermionic string must possess a two-dimensional 

(local) world-sheet supersymmetry. However this is lost in lower dimen- 

sions when we treat the internal bosons and the internal fermions on the 

same footing. In other words, having bosonized all right-moving internal 
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degrees of freedom, which leads to the lattice (F15_3d)R, we have to find 

a way to realize the right-moving world-sheet supersymmetry entirely in 

terms of 15 - ~ internal bosonic fields. In contrast to the ten-dimensional 

string theory, the world-sheet supersymmetry will now be manifest only in 

a more complicated, in general non-linearly realized way. Since the realiza- 

tion of the two-dimensional supersymmetry is one of the key points in the 

construction of the lower dimensional string theories, let us be more precise. 

The supercurrent of the fermionic string theory has to satisfy the fol- 

lowing operator algebra: 

aTF(w) 
Z - - W  

... 
(14.11) 

5 ½T(w) 
TF(z)TF(w)-- ( z -  ~w) 3 + z - w  -t-... 

Eq.(14.11) shows that TF(Z ) belongs to a superconformal field theory with 

central charge c = 15 which can be realized in the simplest case by 10 free 

bosons plus 10 free fermions. This kind of linear realization of world-sheet 

supersyrnmetry appears in the fermionic string theory in 10 dimensions. 

However in lower dimensional theories there are only d free bosons Xl~(z) 
together with their superpartners ¢U(z). These fields contribute [d units 

to the central charge of the superconformal algebra. The corresponding 

space-time supercurrent takes it standard form: 

TFspace-time ( ~ ~ 2 , . . / ---  ¢tZ(z)c3Xlz(z). (14.12) 

The missing 15 - ~d units to the central charge are provided by the internal 

fields XR(z). The corresponding internal supercurrent TiFnt (z)must  be built 

entirely from the bosons xR(z ) and it must satisfy 

~int~ ,,~int 1 (15-  ~d) ~ll~int~(w)' 
• + + . . .  (14.13) 
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where T int (w) is the internal energy momentum tensor. The most general 

ansatz for T~ nt , which is a conformal field of dimension 3/2 and built  entirely 

from the 15 - 3d free bosons Xn(z), is 

r~nt (z) = ~,  A(t)jt .XR(,) + i ~ B(1) . OxR(z)e a'xR(') 
t l 

(14.14) 

with 

12 1 B . l = 0 .  t 2 = 3  , = , 

The coefficients A and B have to be determined such tha t  eq.(14.13) is 

satisfied. One can show that  a necessary condition to arrive at theories 

with chiral fermions is B = 0. Since these are the most interesting theories 

from a phenomenological point of view, we will limit our discussion to this 

case. 

The (length) 2 - 3 vectors t play a very important  role in the construc- 

tion of lower dimensional heterotic string theories. This becomes clear if 

we consider the picture changing operator P+1(2) which is itself a sum of a 

space-time and internal part: 

int = - 2  (eCT~; t" eCTiFnt(z)). (14.15) P+,(z) = P~_'~t'(z)+ P2, (z) (z) + 

Because of BRST invariance, pi+nt(z) must act properly on all states, i.e. it 

maps a physical state to its picture changed image. Thus consider a state 

of the form eq.(14.7) characterized by a lattice vector (wr~;wR,)~R,q) E 

(F26_d) L ® (F15_~ d ® D~,I) R. The operator product with Pi+r~t(z) then 

reads: 

pint¢z~ w) +1 ~ J V~L;~R,~R,q(  ~ ,  

(14.16) 
= - 2  ~ d( t ) (z  - w) twR-q  V~;~R+t,X~,q+l(~, ~) + . . .  

t 

We find tha t  the picture changed state is characterized by lattice vectors 

(wL;WR + t, AR, q + 1) (if w R - t =  --1(--½)in the NS (R) sector for states 
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in the canonical ghost picture). Furthermore, because of the requirement 

of locality we have to demand that every lattice vector w a  E (/"15--~d)R 

satisfies w n "  t E Z (NS) and w R "  t E Z -b ½ (R). Since we know on the 

other hand that / " 2 6 - d ; 1 5 - d , 1  is a self-dual lattice, it immediately follows 

that (0; t, o, 1) e (/"26-d)L ® (/"15-~d)R ® (D~,I)R" 

The upshot of this discussion is that the vectors t must themselves 

be lattice vectors of the right-moving internal lattice (/"15-~d)R" They 

always appear in connection with the V conjugacy class of (D~,I)R, since 

P~t(z) has ghost charge 1. The vectors t are called constraint vectors. Any 

sensible heterotic string theory, whose right-moving part possesses world- 

sheet supersymmetry, requires the existence of these constraint vectors. 

In summary, the classification of d-dimensional heterotic strings within 

the covariant lattice construction amounts to determine all Lorentzian odd 

self-dual lattices F22_d;15_d, 1 which contain (Dd,1)R and allow for a proper 

realization of the internal supercurrent. For theories with chiral fermions 

the internal supercurrent must have the form of eq.(14.14) with constraint 

vectors t, t 2 - -  3. Only a finite but huge number of Lorentzian lattices sat- 

isfies this constraint and these lattices can be shown to possess only a finite 

number of conjugacy classes, i.e. they correspond to rational conformal field 

theories. 

Let us now discuss some general features of the spectrum of lower di- 

mensional heterotic string theories. We restrict the discussion to the most 

interesting case, namely the four-dimensional theories. Generalization to 

other even dimensions is straightforward. In four dimensions, the covariant 

lattice has the structure 

F22;11,1 = (F22)/; ® (I"9 ® D2,1)R (14.17) 

In the following we are using the mass formula eq.(14.9). In the canonical 

ghost pictures q = - 1  (NS) and q = -½ (R) massless states must satisfy 
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1 2 ~wz, + N L  = 1 and ,k2R + W2R = 1, NR = 0 (NS) or :X 2 +W2R = 5/4, 

NR = 0 (R). Let us first concentrate on the left sector. One possibility to 

obtain massless states is if w 2 = 0 and NL = 1. There are two different 

kinds of oscillator contributions. First, a space-time oscillator c)X ~ (5), from 

which the corresponding state will inherit a four-dimensional vector index 

#. Second, we have 22 internal oscillators cgXZ(5) ([  = 1 , . . . ,  22) which 

correspond to the commuting Caftan subalgebra generators of [U(1)]~ 2. 

These two types of oscillator excitations are present in any covariant lattice 

model such that  the rank of the gauge group is always 22. However the 

gauge symmetry  can be extended to a non-Abelian group G via the Frenkel- 

Kac mechanism if the covariant lattice contains vectors (wL; OR), W2L = 2. 

These vectors are called roots of the left lattice and the corresponding vertex 

operators generate, together with the internal oscillators, a level one Kac- 

Moody algebra ~. Thus G appears as non-Abelian gauge group in four 

dimensions. 

Consider now the right-moving part  of the theory. For space-time 

bosons (NS sector) the superconformal ghosts contribute already 21- unit  

to m 2. It follows that  ),R can be either 0 or a vector weight of D2 to obtain 

a massless state. In the former case the corresponding right-moving state 

is a Lorentz scalar and the internal lattice vector "JR must obey w 2 = 1 for 

masslessness. If both )'R = WR = 0 we obtain a right-moving tachyon of 

1 If )~R is a vector weight of D2, i.e. ,XR = (+1,0),  (0, 4-1), and r n 2  = - - 2 "  

WR = 0 we have a massless four-dimensional vector. For space-time fermions 

(R sector) the superconformal ghosts contribute 3/8 units to the right mass. 

Now massless spinors of positive chirality are obtained if :XR = 4-(1,21) and 

the internal lattice vector satisfies w 2 = 3. Analogously, spinors of negative 

chirality have AR 4- (1 ,_1)  and again w 2 = 43- ----- 2 

Now let us combine the left- and right-moving sectors to discuss the 

possible massless states in a four-dimensional heterotic string theory. It 
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is important to note that the occurrence of most of these states is model 

dependent, i.e. depends on whether the various combinations of conjugacy 

classes, discussed in the following, are present in an explicit covariant lattice 

F22;11,1. Also note that to every lattice vector its negative lattice vector is 

also present. This lattice automorphism corresponds in four dimensions to 

CPT conjugation. It changes the chirality of every spinor if we reexpress it 

in the canonical ghost picture. So any fermion in the representation R of 

the gauge group G is automatically accompanied by its CPT conjugate in 

the representation __R. Together they count as one Weyl or Majorana spinor. 

The possible states are then: 

a) Graviton, antisymmetric tensor, dilaton 

This sector exits model independently in any four-dimensional string theory. 

There are no left-moving lattice excitations but one left-moving space-time 

oscillator. On the right-moving lattice we have wR = o, )~R a vector weight 

of D2 and q = -1 .  The corresponding vertex operator in the canonical 

ghost picture is 

V(5, z) = ~OX~(5)¢V(z )e -¢ (Z)e  ~kpx"(~'z). (14.18) 

%v denotes the polarization tensor. It is symmetric and traceless for the 

graviton ht, v, antisymmetric for B~v (which is a pseudo scalar in four di- 

mensions after a duality transformation) and the trace part for the dilaton. 

BRST invariance requires kt*ettv = O. 

b) Left gauge bosons 
The right-moving sector is identical to the gravity sector. For the left- 

moving sector we have to consider two types of states. First, the 22 internal 

oscillators which lead to the gauge vector bosons of the Caftan subalgebra 

[U(1)]~ 2. Like the states in a) these states are present in any covariant lattice 

theory. Their vertex operator is almost identical to eq.(14.18). One only 

replaces the space-time oscillator cgXt*(2) by an internal oscillator OXX(5) 

(I = 1 , . . . ,  22) and et~v by a polarization vector ev. Second, OXX(2) can 
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be replaced by root vectors of (F22)L with w 2 = 2 corresponding to non- 

Abelian gauge bosons of the gauge group G. Their vertex operators contain 

a factor e iwLX(e)  which replaces c9X~(5) in eq.(14.18). The corresponding 

Kac-Moody algebra is always of level one. 

c) Right gauge bosons 

These types of states get their vector index from a left-moving space-time 

oscillator cOXt~(2). Thus, the right-moving part  must contribute a Lorentz 

scalar with w 2 = 1, AR = o, q = - 1 .  Since there is no left-moving lattice 

excitation wL connected with wa, w 2 = 1, these states correspond to new 

"roots" (wR,o , -1 )  of the lattice (F  9 ® D2,1)R. This then implies that  

D2,1 is part  of a larger algebra Dn,1 n > 2. Then space-time spinors (see 

next paragraph)  must come from the decomposition of Dn, 1 spinors and 

appear automatically in non-chiral pairs. Thus chiral fermions arise only 

from covariant lattices which do not lead to right gauge bosons. In this 

sense the right gauge bosons are not interesting from a phenomenological 

point of view. 

d) (Chiral) fermions 

For these states ~,R is a spinor weight of D2 and w 2 = 3/4 (q = - 1 / 2 ) .  

Since we are considering spin ½ particles, the left-moving part  must only 

contribute internal, gauge degrees of freedom. Therefore we are led to con- 

sider lattice vectors wL with w 2 = 2. These vectors are in general not roots 

of (F22)L, which will always be accompanied by internal oscillators and 

space-time oscillators, leading to gauginos and gravitinos, respectively (see 

(f) below). The wL are then weight vectors of particular representations 

of the generally non-semi-simple gauge group G. In order to obtain chiral 

fermions these weights should correspond to complex representations of G 

(e.g. spinor representations of SO(4n - 2)). In addition one must ensure 

that  the lattice /"22;11,1 does not contain conjugacy classes with the same 

vector (w~; wR) coupled to the antispinor weight of D2. These states would 

act as mirror particles and destroy the chiral structure. 
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e) Scalars 

Massless scalars have An = 0 and w 2 = 1 (q = -1 ) .  In general, they 

transform non-trivially under the left gauge group and are also characterized 

by weights w 2 = 2. 

.f) Gravitinos - space-time supersymmetry 

To obtain gravitinos we need space-time spinors together with w 2 = 3/4 

and wL = o, NL = 1 where the left-moving oscillator carries a space-time 

vector index #. The presence of the lattice vectors (0 ;wn,~R,- -1)  with 

w2R = 3/4 and AR a spinor of D 2 implies that  (D2,1)R is part  of a big- 

ger algebra in analogy to the case of the right gauge bosons. The vectors 

(WR, ~, _1)  are just  spinorial roots of this bigger algebra and the only regu- 

lar embeddings which yield such roots are the embeddings of D2,1 into the 

exceptional algebras E3,1, E4,1 and Eh, 1 which are the Lorentzian analogs of 

the Euclidean algebras E6, E7 and E 8. If we map D2,1 to D 5 the condition 

for the presence of gravitinos is that  there are (length) 2 = 2 vectors with 

spinor components in D 5. The only regular embeddings of D 5 with this 

property are those into E6, E 7 and E 8 leading to one, two and four graviti- 

nos respectively. The Euclidean exceptional algebras can be obtained from 

the Lorentzian ones by replacing/-)ghost by D gh°st ~-'1 as explained before. We 

will come back to this in the next section where we will also discuss in detail 

the connection between exceptional groups and space-time supersymmetry 

which is a model-independent feature of all four-dimensional strings, not 

restricted to the covariant lattice construction. As a consequence of space- 

time supersymmetry, any physical fermion is accompanied by a physical bo- 

son. Adding or subtracting the gravitino lattice vector to a particular state 

provides its supersymmetric partner.  Note that  supersymmetric partners 

necessarily have different vectors wn. However the total  number of these 

vectors appearing together with a particular vector wL does of course coin- 
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cide for the fermions and bosons. We can now also replace the left-moving 

space-time oscillators of the gravitino vertex operator by an internal oscil- 

lator or a root of (F22)L and get the supersymmetric partners of the gauge 

bosons, the gauginos. 

Let us now present an explicit example of a four-dimensional heterotic 

string theory which has N = 1 space-time supersymmetry, possesses chiral 

fermions and is tachyon free. We start with the Euclidean even self-dual 

24-dimensional Niemeier lattice D7 ® All  ® E6 with glue vector in the 

(644, 12, 27) representation. The lattice can be decomposed to 

['24 = D7 ® D3 ® U(1) 2 ® 136 
(14.19) 

= D7 ® D 3 ® U(1) 3 ® D5. 

As explained before, we can map this lattice to a Lorentzian odd self- 

dual lattice F22;11,1. To do this we make the replacements (D7)  R ---+ 

(D3)L ® (D2)R, (D3)R --~ (D7)L ® (D2)R, (D3)R ---* (D7)5 ® (D2)R, 

(D3) R ~ (Ds)L and (D5)R --* (D2,1)R. The last map corresponds to 

replacing D 3 by the ghost lattice D1 while simultaneously reversing the 

signature (cf. also Chapter 13). It follows that the U(1) factor from the 

decomposition of/?76 in eq.(14.19) combines with D2,1 to E3,1 as described 

above. We then get 

F22;11,1 -- [D 3 ® D~ @ D5] L ® [0 3 ® U(1) 2 ® E3,1] R 

= [D3 ® D~ ® DSIL ® [D~ ® U(1) 3 ® D2,1]R 
(14.20) 

fi'om which we immediately read off the rank 22 gauge group 

G = SO(6) x [SO(14)] 2 x SO(10). (14.21) 

We can now also decompose the glue vector according to eq.(14.19) and then 

generate all conjugacy classes of the lattice F24 or /-"22;11,1. This is most 

economically done by computer. The following conjugacy classes contain 
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massless spin 1/2 fermions (the semi-colon separates the left from the right 

lattice): 

D3 D7 D7 D5 D2 D2 D2 U(1) U(1) U(1) D2j 

(0, v, v, 0; 0, 0, 0, ~ + ½ ,  ~_~,1 ~6, s/ 

1 ~ s) (o, v, o, v; o, o, o, ~ - ½ ,  +~, 8,  

(o, o, v, v; o, o, o, -¢~,  - ~ ,  ~6, s) 

(v, v, 0, 0; 0, 0, 0, -¢~  - ~  ¢~ s) 3 ) 3 ) 6)  

(v) o ) v ,  o; o) o) o ) ~ _  ~)I ~ + ~)~ ,z~ ) s) 

(v, 0 )0 ,  v; 0) 0) o, ~ + ½ ,  ~-~)~ ¢~, s) 

v~ 1 x~ ¢~ s) (S, o, o) C; C, 0) o, - ¼ -  i2, ~ -  12, 6,  

¢~ 1 _ ¢ ~  ~ S) (C, o) o, C; S, o, o) -¼- ~2, ~ 12) 6, 

Their CPT conjugate states are in the conjugacy classes with the negative 

lattice vectors. For the U(1) factors we have given the charges. Note that 

this model possesses chiral fermion. The last entry S E D2,1 denotes just 

one light-cone degree of freedom. If we now look for conjugacy classes 

with massless scalars, we find the same list as above with only the last two 

columns replaced by (6-~,S) ~ ( - ~ ,  V), each of them also representing one 

physical degree of freedom (apart from the multiplicity given by the (D3)R 
part which provides a kind of family replication of the massless fields). 

This is just a reflection of space-time supersymmetry. We will discuss this 

situation in detail in the next section. For the discussion there it will be 

useful to keep this particular example in mind. For non-supersymmetric 

theories we will in general get different numbers of fermions and bosons 

characterized by different lattice vectors. We will refer to the scalars and 

fermions above as matter fields as they have spin 0 and 1/2 respectively. 
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There are three more conjugacy classes which lead to massless physical 
fields, namely 

D3 D7 D7 Ds D2 D2 D2 U(1) U(1) U(1) D2,1 

(0, o, 0, o; 0, 0, 0, 0, 0, 0, o) 

(0, 0, 0, 0; 0, 0, 0, 0, 0, c)  

(0, 0, 0, 0; 0, 0, 0, 0, 0, _v~ s) 2 

The trivial conjugacy class contains the graviton, antisymmetric ten- 

sor and dilaton as well as the gauge bosons. The remaining two conjugacy 

classes contain both the gauginos and the gravitino. It is now important  

to observe tha t  if we take any of the massless scalars and add the grav- 

itino lattice vector, we get a fermion, the supersymmetric par tner  of the 

bosom This is also trivially satisfied for the gravity sector. We learn tha t  

the gravitino acts as the supersymmetry charge. It is important  to realize 

that  supersymmetric partners differ only in their space-time and super- 

conformal ghost quantum numbers and the U(1) charge coming from the 

decomposition of the E6 factor of the original lattice. It is the appearance 

of E 6 D U(1) ® D 5  or E3,1 D U ( 1 ) ® D 2 , 1  in the right lattice which is 

responsible for the presence of space-time supersymmetry. We can also add 

to the scalars twice the gravitino lattice vector and end up in conjugacy 

classes with (~x/~,0) e (U(1) x O2,1). This leads to massless states with 

only exist in the q = 0 ghost picture and which are not BRST invariant. 

These are the auxiliary fields of the chiral N -- 1 multiplets. 

Given the conjugacy classes it is now trivial to write down ]~he rep- 

resentations in which the mat ter  fields transform under the gauge group 

G: 
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G : so(6) ~ so(~4) ® so(z4) ~ so(~o) 

! 1.44 1/4 ! 

! I_44 i I_00 

I I 144 i_0_0 

6_ I_!4 i_ l 

6 i i__4 ! 

6 ! ! i__0 

4_ ! ! iA 

The 24 constraint vectors t which build the two-dimensional supercur- 

rent in this particular model are 

U(1) U(1) U(1) D2 D2 D2 

@), +,,o, o,o) 
~ ~ ~ ~ ) ,  o,+i, o,o, +1,o) ( + ( : -  6 ,  2 6 , 

1 ~ ~ ) ,  0,0, 0,+1, 0,±1) , 

In order to satisfy the internal superconformal algebra eq.(14.13), the coef- 

ficients A(t) must satisfy d(t)  2 1 -- ~--~. 

14.3 G e n e r a l  a s p e c t s  of  f o u r - d i m e n s i o n a l  h e t e r o t i c  s t r i n g  
t heo r i e s  

In the previous section we have presented one particular way to construct 

four-dimensional heterotic string theories, the covariant lattice construction, 

which uses only free (chiral) world-sheet bosons. This construction already 

gives an enormous number of consistent four-dimensional heterotic string 

theories. This shows that whereas in ten dimensions there existed only a 

few theories, their number proliferates rapidly as we go to lower dimensions. 

Moreover, there are different ways to construct heterotic string theories in 

lower dimensions and there is an overlap between them. However, all these 
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constructions are examples of conformal field theories which describe the 

internal string degrees of freedom. A specific conformal field theory has 

to pass certain consistency requirements such as the correct value of the 

ceatral charge, modular invariance, etc. So let us discuss properties of four- 

dimensional heterotic string theories which follow from the general structure 

of the internal conformal field theory. In addition, one can use "phenomeno- 

logical" input like space-time supersymmetry or a chiral fermion spectrum 

to constrain the internal conformal field theory further. This will be dis- 

cussed at the end of this section. 

Any four-dimensional heterotic string theory possesses four space-time 

string coordinates X~(5, z). In addition there are also the right-moving 

world-sheet fermions ¢~(z). Finally, there are the conformal ghosts b(2), 

b(z), ~(2) and c(z) as well as the superconformal ghosts fl(z) and 7(z). 

These fields build the external conformal field theory. The left-moving part 

is a conformal field theory with central charge ~xt = -22 and the right- 

moving part a superconformal field theory with C e x t  "--  --9. Conformal 

invariance requires that the internal world-sheet degrees of freedom cancel 

the conformal anomaly of the external fields, i.e. we need ~int _ 22, C int = 9: 

11 2Tint(w) -t-~)~]~int (~) + . . .  
Tint(z)Tint (w) - ( 2 -  ~)4 -t- ( 2 -  ~)2 ~ _  

(14.22) 
9 2T int (w) c3T int (w) 
2 -t- + + . . .  

In addition, decoupling of the spurious states or, equivalently, Lorentz in- 

variance in the light-cone gauge, requires the existence of a (local) n = 1 

internal right-moving world-sheet supersymmetry generated by the internal 

supercurrent T~nt(z) which has to satisfy 

3 1Tint(w ) f~nt(z)T~nttw) + + . . .  (14.23) 
(z : - 
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It is crucial to realize that the left-moving and right-moving internal 
conformal field theories can be chosen independent of each other; only lo- 

cality and modular invariance link the left- and right-moving sectors in a 

definite way. Moreover, it is not required that the internal conformal field 

theory admits an interpretation as a compactification on some manifold. 

It is again convenient to replace the four external world-sheet fermions 

¢~(z) by bosonic fields ¢i(z) (i = 1,2) and the superconformal ghosts by 

a scalar ¢(z). Then all states are characterized by vectors (~,R,q) of the 

covariant lattice (D2,1)R and the general form of vertex operators is 

v (~ , z )  = (O~LX"(~))'~(O"~RX~(z))'~R(O~¢~(z)) m~" 
(14.24) 

× eiXR'¢(Z)eq¢(z) ~nt (2, z)e  ik~'X~'(~'z) . 

Vin t (2, z) are the conformal fields of the internal conformal field theory with 

conformal weight (hint,hint). The mass of the corresponding state is given 

by 

rn 2 = NL + hint - 1, 

1 2 .~ = } ~  - ~q - q + Y , ~  + Y ~  + h~.t - 1 (14.25) 

+ 

N = nrn are oscillator excitation numbers. We require that the internal 

conformal field theory be unitary which implies that  hint' hint > 0. Further- 

more, we have to insist that the theory is local. This requirement provides 

a link between the external and the internal part of the theory. Consider 

the operator product 

vl(2,z)V~(~,, w) 

~1 ~2 - ~3 -h~nt-h~nt+h~,+;~lR'~2R-alq2 (14.26) ~ ( 2 -  ~ ) - ~ i o t -  = , *  i~t(~ - w) 

× ei(A1R+A2R)'¢(W)e(ql+q2)¢(w)vi3t(~, w) + . . .  
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where we have neglected the bosonic oscillators which always give rise to 

integer powers of (z - w ) .  Also, the e i kX  factors give lz - w[ kl"k2 which 

does not have branch cuts. Locality now demands that 

+ hi.  + h3n, +  IR"  2R- qlq2 e Z (14.27) 

The complete Hilbert space, containing the left-moving and right-moving, 

the internal and external states, must obey above condition. Modular in- 

variance of the one-loop partition function constrains the possible combina- 

tions of internal and external highest weight states further. However it is 

very difficult to analyze the constraints of modular invariance for a general 

model. 

Let us now discuss the possible spectrum of the four-dimensional het- 

erotic string theories. 

Graviton sector 

This sector is completely model independent and present in any four- 

dimensional string theory. This comes from the fact that any unitary in- 

ternal conformal field theory contains the identity operator with h i n t  - "  

hint -- 0. Also, the 0 conjugacy class of (D2,1) R must always be present 

and it leads in the NS sector with canonical ghost charge q -- - 1  to a 

right-moving space-time vector with ~R = (=kl, 0), (0, =t=1). Finally, OXtt(~) 

is always possible. This combination of conformal fields yields the gravi- 

ton ht~v, the anti-symmetric tensor Bt~. and the dilaton vertex operators 

eq.(14.18). 

Gauge sector 

Here we make the (reasonable) assumption that any gauge symmetry has its 

origin in an internal Kac-Moody algebra of level k as is the case for all known 

closed string theories. The affine Kac-Moody algebra eq.(ll.16) can be re- 

alized either on the left-moving side by currents Ja(2.) (a = 1 , . . . ,  dim G) 

or on the right-moving side by currents Ja(z). In the former case the ver- 

tex operators of the corresponding gauge bosons are given by (see also the 
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discussion in the next chapter about the normalization of these vertex op- 

erators) 

Vta(2, z,k ) = Ja(2)¢t~(z)e-¢(Z)eik"X"(~,z). (14.28) 

In the latter case, super-BRST invariance demands that Ja(z) is the upper 

component of a two-dimensional superfield, i.e. can be obtained via picture 

changing from a dimension ½ field Ja(z).  Then the right-moving gauge 

boson vertex operators in the canonical ghost picture is 

V~(e,z,k) =cOX,(2)ja(z)e-¢(Z)eik"X"(~,z), (14.29) 

where in the 0-ghost picture we have 

( 4.3o) 

Vertex operators of the form eq.(14.30) with Ja(z) not being the upper 

component of a two-dimensional superfield correspond to "auxiliary" non- 

propagating gauge fields which are important for the description of space- 

time superfields in supersymmetric heterotic string theories. They are not 

BRST invariant. 

Let us consider again the left gauge bosons of eq.(14.28). The inter- 

nal Kac-Moody algebra ~ contributes to the central charge of the internal 

conformal field theory with 

2k d imG 
~" - -  (14.31) 

c2+2k 
Clearly this value must not exceed the total internal central charge ~ = 

22. This gives a limit on the dimension of the gauge group dependent 

on the level k and the Casimir C2. If k is one, the rank of the gauge 

group must be less or equal to 22 (Cf. eq.(11.25)). The existence of a 

level one Kac-Moody algebra also implies that the internal conformal field 

theory contains a certain number of free bosons or fermions which provide 

an explicit realization of the internal Kac-Moody currents. Thus, for these 
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cases the corresponding part of the internal conformal field theory has a 

very simple structure. 

Massless ferrnions 

Now assume that the theory contains N F massless fermions ~Pi (i = 

1 , . . . ,  NF). Massless space-time fermions have to be right-moving spinors 

(hR = (=k½,=k½)) and q = 1 .  The associated internal conformal fields 

Gg'i(Z,z) must be operators of dimension (h, h)int = (1, 3). Then the com- 

plete fermion vertex operator in the canonical ghost picture is 

Vg"(5, z,h) = G~i(2, z)So, e-~(z)e ik~'X~'(~''z). (14.32) 

Therefore, the number N F of massless fermions is determined by the number 

of internal fields G ~ (5, z) which are coupled to the spinors of D2,1. For the 

fermions to be chiral the fields G~i(2, z) must transform under a complex 

representation of the gauge group G, and it must be ensured that the spinors 

of negative chiratity are not coupled to the same fields G~Pi(2.,z) as the 

spinors of positive chirality. BRST invariance of the fermion vertex operator 

requires that  

~ + finite (14.33) 

where ~ i  are conformal fields of dimension (h,h) - (1, ~ ) .  The pres- 

ence of the branch cut tells us that G ~i is in the R sector of the internal 

superconformal field theory. 

Constraints from superconformal field theory also exclude the presence 

of fermionic tachyons. The contribution to the conformal dimension of a 

R state in the canonical ghost picture is >_ 5 and the internal conformal 

field theory contributes h i n  t > q n t  __ 3 (cf. eq.(12.18)) so that h > 1. The 
- -  2 4  - - 8  

contribution from e ik'X must then be ½k 2 <_ 0. This especially excludes the 

presence of tachyons in space-time supersymmetric theories. 
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Massless scalars 

Massless space-time scalars ~i (i = 1 , . . . ,  NS) have A R = o and q = -1.  

Therefore their existence implies the presence of internal fields G¢i(5, z) 

with conformal dimension (h, h)int = (1, ½). The corresponding vertex op- 

erators in the - 1  ghost picture are 

V ~i ( f ,  z, k) = G ~i (2, z)e-¢(Z)e ik~X~'(~''z). 

BRST invariance tells us that operator products 

G~i('~, w) have the structure 

~ 

Z - - W  

between 

+ finite 

(14.34) 

T)n'(z) and 

(14.35) 

where G~' (@, w) are internal conformal fields of dimension (h, h )int = (1, 1). 

This means that G ¢~ (5, z) and ~ i  (5, z) are the two components of a two- 

dimensional superfields with respect to the right-moving world-sheet super- 

symmetry. Then the scalar vertex operator in the 0 ghost picture is given 

by 

V(5, z,k) = [-iG¢i(2, z)k#¢#(z) + Gg'i(5, z)]e ik'x~'(~''z) (14.36) 

where the first term comes from picture changing with the space-time su- 

percurrent T ~ t =  - l ¢ ~ O X " ( z ) .  

Space-time Supersymmetry and Exceptional Groups 

Without wanting to emphasize the "phenomenological" importance of space- 

time supersymmetry (vanishing of the cosmological constant or the possible 

solution of the hierarchy problem) let us assume that there are N space-time 

supersymmetries originating from the right-moving sector. The correspond- 

ing supercharges are denoted by QA (A = 1 , . . . ,  N). They are the contour 

integrals (zero-mode part) of the holomorphic part of the gravitino vertex 

operators at zero space-time momentum: 

f dz_ A . . dz - 
Qa(q)A = ? ~_~iy£(q)(Z ) , QaA(q) = f ~-~i VaA(q)(Z). (14.37) 
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In the canonical ghost picture we have 

v~(_l)(Z) = S~e-+/2~(z)  , ~ ( _ ½ ) ( z )  = S S + / ~ ~ ( z ) .  (~4.3S) 

Sa(z)  and Si,(z) are spin fields of the Lorentz group S0(4) characterized 

by the spinor weights of D2: 

S~(z) = j),~.~(z) 

Sa(z) = e i ~ ' ¢ ( ~ )  

1 1 
~.  = ± ( ~ , i ) ,  

1 1 
:,~ = ± ( ~ , - ~ 1 .  

(14.39) 

The fields ~,A(z) are the (degenerate) Ramond ground states of dimension 

h i n  t - -  ~ of the internal superconformal field theory with c = 9. 

Now the space-time supersymmetry algebra (Z AB = - Z  BA are cen- 

tral charges, Ca~ the charge conjugation matrix and (7~)a/~ the four- 

dimensional Dirac matrices) 

(14.40) 
{Q~, Qf~ } = c . ~ z  AB 

translates immediately to the following operator product expansions: 

w ) - ~ 5  A + (z - W)¼JBA(w ) + . . .  ~ * ( z ) ~ B ( w ) ~ ( z -  3 
~ A ( z ) Z B ( w )  ~ (z -- ~)--¼¢AB + O ( ( z  -- ~ )~) .  (14.41) 

Here we have used that the momentum operator iOX~(z)  is given by 

- i e - ¢ ¢  ~ in the q = -1  picture. The dimension one fields JAB c a n  be shown 

to be currents of internal level one Kac-Moody algebras of rank k (k = 1, 2, 3 

for N = 1, 2, 4). The dimension 1/2 fields cAB = _¢BA are related to the 

central charges in the q = -1  picture by zA~ = ~ ~-'-~rZ2e--¢¢AB(z). Using 

the Frenkel-Kac construction, the c u r r e n t s  JA B can be expressed by k free 

internal bosons H!nt (z) (i = 1,. . .  ,k). The internal vertex operators Vint (z) 

can then always be written as (neglecting derivatives of H~:.nt): 
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H n t ( Z )  --- eiWint 'Hint(Z)Yint(Z).  (14.42) 

Tile vectors Win t are the weights of the internal algebra g spanning the 

weight lattice F k of g. The Vint(z) belong to the remaining conformal field 

theory with ~ = 9 - k and commute with H~int. 

Let us fill in some of the details for the phenomenologically most in- 

teresting case of N = 1 supersymmetry [12]. Eq.(14.41) then simplifies 

to 
~(z ) /y t (w)  N (z - w) -3/4 + ½(z - w)l /4  y(w) , 

~ O ( ( z  - 

Consider the four point correlation function 

f ( z i )  = (Z (z~ )Z t ( z2 )Z (z3 )Z t ( z , ) )  

z]3z24 3/4  - 

(14.43) 

(14.44) 

where x = z12z34 (cf. eq.(4.72)). The leading orders of the operator product  
z13 z24 

expansions eq.(14.43) determine the behavior of f ( z i )  as zlj ---* 0 for any pair 

i , j .  One finds t h a t / ( x )  is an analytic function and constant at x = 0, 1, oo, 

from which it follows that  it is a constant.  With  (1) = 1 we h a v e / ( x )  = 1. 

In the limit zl ---* z2, eq.(14.44) becomes 

/ ( z~ ) -~  <Z(z3)Et(z,)> (zl~) -3/4 + ½<J(z~)E(z3)Zt(z4)> (zl~.) 1/4 
(14.45) 

= (z . z3 , ) -3 /4  + -1. 

From this we find, taking the limits z3 --* z4, z2 --+ z3 and z2 ---+ z4: 

3 
J ( z ) J (w)  ,~ ( z -  w ~2) + finite, 

3-E(w) 
J ( z ) r ( w ) , ~  2 + finite, (14.46) 

Z - - W  

J ( z ) Z t ( w ) N  3i~t(w) + finite. 
Z - - W  
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So J(z) is a U(1) Kac-Moody current which can be written in terms of a 

flee boson as 

J(z) = i45 OH(z). (14.47) 

The operators Z and zt can be expressed as exponentials of H: 

Z(z) = ei~ H(z) , Z t = e - i~  H(z). (14.48) 

In fact, any operator with definite U(1) charge Q, i.e. 

J(z)Vq(@,w) - Q Vq(ff~,w) + . . .  (14.49) 
Z - - W  

can be written as 

i~3 H(z  ) ~ vQ(~,z) = ~  P(](z))y(~,z) (14.5o) 

where P(J) is a polynomial in J and its derivatives and ~7 is independent of 

the boson H. In particular, physical states are now characterized by vertex 

operators 

• i -q-H z - 
Y ( 2 ,  z)  : e~An'¢(Z)eq¢(Z)e v~ ( )l~nt(5, z ) (14.51) 

where l/lint belongs to the remaining conformal field theory with ~ = 22 and 

- 8. (The boson H already contributes one unit to the central charge.) 

The numbers ~ build the internal weight lattice -P1 of the U(1) Kac-Moody 

algebra. BRST invariance of the gravitino vertex operator demands that 

the operator product between T~nt(z) and ~7(w), ~Tt(w) contains a branch 
1 cut of order ]: 

T~nt (z)~(w) _ 

TiFnt(z)Et(w) - 

2(w) + . . .  
(z-w)} 
2t(w) + . . .  

(z-w)} 

(14.52) 

where ~7(w), ~t(w) are operators of dimension 11/8. This equation, to- 

gether with eq.(14.48) implies that the internal supercurrent does not have 
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definite U(1) charge but splits into two parts with U(1) charges Q = 4-1 

respectively: 

TiFn'(z)=e~H(z)~' ,~(z)+e--~H(z)~'F(Z)=T[(z)+TF(Z ) (14.53) 

with 

J(z)T~-,(w) ,,., 4- T~.(w). (14.54) 
Z - - W  

~f/~ are fields of conformal dimension 4/3 of an internal conformal field 

theory with ~ -- 8. Requiring T~ nt to satisfy eq.(14.23), we find 

3 
T}(z)T~(~,)- (;. _ ~w)3 + 

¼J(w) ~o:(~) + ¼T~nt(w) 
( z  - w ) 2  + z - w 

T,~(z)T,~(w) ~ T~(z)T~,(w),.~ finite 

where 

. . .  
(14.55) 

1 

~]nt(z) = -~(0H(z))  2 + ~nt(z). (14.56) 

Tint satisfies a Virasoro algebra with 5 = 8. Comparing now eqs.(14.46,53,54 

and 55) with eq.(12.53) we find that ~nt, T~ and J generate a n = 2 

superconformal algebra. Thus, N = 1 space-time supersymmetry requires 

an n = 2 extended superconformal algebra on the world-sheet. In addition, 

space-time supersymmetry demands that all states have quantized (integer 

or half-integer) U(1) charge Q. This can be derived from the requirement 

that the operator product expansion of an arbitrary state eq.(14.51) with 

the gravitino vertex be local: 

( , ~ ) ' ~ R + ~ +  EZ.  (14.57) 

The following combinations of D2,1 conjugacy classes and U(1) charges are 

then allowed: 

(o,z), (v ,2z  + 1), (s ,2z + ½), ( c , 2 z -  ½). (14.5s) 
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We are now ready to explain the connection between space-time super- 

symmetry and the appearance of the exceptional groups discussed in refs. 

[5, 13-18]. The key point is that the conjugacy classes eq.(14.58) build the 

weight lattice of the Lorentzian lattice E3,1. To see this let us use instead 

of the Lorentzian lattice D2,1 the Euclidean lattice D5 as explained at the 

end of Chapter 13. Recall that D 5 can be decomposed to D L°rentz ® D gh°st 

where states in the canonical ghost picture correspond to fixed D~ h°st lattice 

vectors as shown in eq.(13.98). Thus, all states eq.(14.51) are described by 

vectors w in the D5 lattice. (In the canonical ghost picture the space-time 

and superconformal ghost contribution to the conformal weight of any state 
1 2 is 2w .) In the Euclidean version we are now dealing with a level one SO(10) 

I(ac-Moody algebra. N -- 1 space-time supersymmetry, i.e. the existence 

of the free internal boson H(z), further enlarges SO(10) to a SO(10) × U(1) 

with lattice vectors (w, ,-~K~) E F6 -- D5 ® U(1). The su- Kac-Moody algebra 

percharges are represented by the F 6 lattice vectors (4-(½, ½), 2, 2 , - ~ , 1  1 1 @ )  
:j=l 1 1 1 1 @ and ( ( 2 , - 2 ) ,  2, ~ , - 2 , -  ). However these lattice vectors are among 

the "spinorial" roots of E6 (cf. eq.(ll.42). Their existence enlarges the 

SO(10) × U(1) Kac-Moody algebra to the level one E 6 Kac-Moody algebra. 

Locality of the operator algebra demands that all vectors (w, @Q)  E /"6 

have integer scalar product with these roots, i.e. /"6 is the weight lattice of 

E6. 

E6 possesses three conjugacy classes denoted by 0, 1 and i with lowest 

representations 1, 27 and 2---7 respectively (note that the 1 and i conjugacy 

classes are CPT conjugates of each other and therefore always appear to- 

gether). Under D 5 ® U(1) the conjugacy classes decompose as 
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o = (o,o ) e ( v, 45) e ( s , - - T  ) e ( _y)45 , 

- T ) e ( s ,  e (c ,  -~-) - , 

i = (o, -~75)  e (v, 45 75 ~45) -5-) e (c, e(s,  - - ~ )  

In this notation the 12 U(1) conjugacy classes 

q=-VS, 5 -~v /3 , . . . ,  45  (14.60) 

define the elements C~q of the one-dimensional U(1) weight lattice by 

~q = q + 275k (k e z) .  (14.61) 

The conjugacy classes in eq.(14.59) are just those allowed by locality (cf. 

eq.(14.58)) if we replace D2,1 by D 5 and rescale the U(1) charge by v/3. 

Space-time supersymmetry transformations act on a particular state 

(vertex operator) Vw (w E E3,1 resp. E6) as 

v',(w) = Jo~ dz ~;-i~ q~( z) V,~(w). (t4.62) 

Since the supercharge corresponds to spinorial root vectors a of E6, VIw~ is 

characterized by the E 6 vector w + a. Thus the supersymmetric partners 

correspond to vectors within the same E 6 conjugacy class. It follows that the 

supermultiplet structure is encoded in the representations of the exceptional 

group E 6. 

Reversing arguments, it is the appearance of E 6 which is responsible for 

N - 1 space-time supersymmetry implying the n -- 2 superconformal alge- 

bra together with the U(1) quantization condition dictated by locality with 

the gravitino vertex. The quantization condition, the correlation between 

U(1) charges and space-time transformation properties, are contained in the 

320 



E3,1 or, equivalently E 6 weight lattice. The supercharge, being one of the 

roots, connects different states. It is also just the operator which generates 

the spectral flow between the NS and R sectors as described in Chapter 12. 

Let us exemplify above by looking at the massless states of an arbitrary 

N = 1 supersymmetric (heterotic) string theory. 1 Here only the weights 

of the fundamental and adjoint representations of E6 are relevant. Let us 

start with the latter. It decomposes under SO(10) x U(1) as 

78 = (4_5,0) + (16,  - - i f - )  + (i-6, + (1,0). (14.63) 
_ _ _ T )  

The (1___, 4 ) ,  (16,-~23) representations correspond to a holomorphic spinor 

and antispinor respectively, namely just the supercharges Qa, (~a. Group 

theoretically it is clear that the roots corresponding to the supercharges 

interpolate between the different SO(10) x U(1) conjugacy classes. But this 

can also be verified at the level of vertex operators if we make the truncation 

D5 "-* D2,1. Indeed, acting with the supercharge on the holomorphic spinor 

we obtain the vector Ctz(z)e -¢(z). This state corresponds to the (45, 0) rep- 

resentation of SO(10) × U(1). But note that the spinor itself can be reached 

from a vertex operator N iv'~Og(z) which is just the U(1) current. This 

state is not BRST invariant; it does not have a copy in the canonical ghost 

picture. It corresponds to an auxiliary field. The three states, the vector, 

the spinor and the auxiliary scalar are the off-shell degrees of freedom of a 

N = 1 vector supermultiplet. Multiplying these states with a left-moving 

Kac-Moody current ja(2) leads to a N = 1 gauge vector multiplet. On 

the other hand, multiplying with OX~(2) leads to the N = 1 supergravity 

multiplet where the auxiliary vector corresponds to the auxiliary gauge field 

of the U(1) Kac-Moody algebra. 

lit  is helpful for this discussion to keep in mind the explicit example constructed in 

section 14.2. 
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The (massless) matter sector of the N = 1 supersymmetric heterotic 

string theory is obtained from the 27 (2__) representation of E 6. The weights 

of this representation lead to conformal fields e iw'¢(z) (w E E3,I) of dimen- 

sion ~. (The weights in the 27 and ~ of E 6 have (length) 2 = ].) Therefore, 

in order to obtain massless fields one has to multiply this operator by an 

internal conformal field ~i  (5, z) (i = 1 , . . . ,  N, N being the number of "fam- 

flies") of conformal dimension h - 1, h - ½, where the Gi(5, z) are fields of 

the internal conformal field theory with ~ - 22 and ~ -- 8. The fundamental 

representation of E6 decomposes under SO(10) x U(1) as 

_ - - 5 -  
_ - C )  + (10, + (14.64) 

The first term corresponds to a space-time spinor. Acting with the super- 

charge on this state gives the second term in eq.(14.64) which corresponds 

to a physical massless scalar in the - 1  ghost picture. We should stress that 

when determining the space-time properties of a state given by a particu- 

lar SO(10) x U(1) representation, one always has to make the truncation 

D5 -~ D2. The scalar vertex operators Vi(2, z),'., e-i~Hint(z)Gi(2, z) of 

conformal dimension (h, h) = (1, ½) and U(1) charge Q = - 1 are just the 

chiral primary fields of the internal n = 2 superconformal algebra, as de- 

fined in Chapter 12. Finally, the last term in eq.(14.64) corresponds to an 

unphysical, i.e. not BRST invariant, scalar in the 0 ghost picture. Together, 

these three fields build the off-sheU degrees of freedom of a N = 1 chiral 

multiplet (if we add also the CPT conjugate states in the ~ representation). 

The U(1) charge is just the R-charge of supersymmetric field theory. 

Let us now describe the appearance of the exceptional group E 6 in 

four-dimensional N = 1 supersymmetric heterotic string from a somewhat 

different point of view. Consider the four-dimensional Poincar~ algebra with 

L~v the generators of the Wick rotated Lorentz group SO(4) and p~ the 

space-time momenta: 
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[LiLy, Lpcr] ~ 5t~pLvcr - 6 v p L ~ r  + 6wrLt~ p - 

[ L ~ , , p p ]  .-, St, pp.  - 5~pp~ . 

6~Lup , 
(14.65) 

Adding the space-time supercharge one obtains the following graded Lie 

algebra 

[Q, L~v] ,,~ 7#vQ , 

[Q,p.] ,'.. o, (14.66) 

{Q, O} ~ ~ ' ; . .  

The generators L~v, p~ and Q can be represented as the contour integrals 

of the following operators: 

f = ¢ , e - ¢ ,  

Qa = Scte-¢/2eiX~-H. 

(~4.67) 

In the language of the covariant lattice D2,1 ® U(1)in t __ D2Lorentz ® Dlghost ~9- 

U(1) int they are given by the foUowing lattice vectors. 

Q 
(A,q,-~)L~, , ,  = (=kl, =t=l, 0, 0), 

Q 
(A,q, ~ ) p ,  = (+1,0,--1,0), (0,+1,--1,0), (14.68) 

(~'q' )O=(+(~' )' 2' ~ )" 

(For the Lorentz generators Lgv we have also to include the Caftan sub- 

algebra generators 0¢1(z), 0¢2(z).) One can show that up to unphysical 

terms these operators generate the graded Lie algebra eqs.(14.65,66). For 

anticommutator since (A,q, ~3)~ = 1. It is then the supercharges we get a n  

evident that the supercharge vertex operator corresponds to those "root" 

vectors which extend the algebra D2,1 × U(1)int to the exceptional algebra 
nghost E3,1. Finally, replacing Dlgh°st by ~3 and therefore D2,1 by D5 the 
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exceptional algebra E 6 becomes, in the sense discussed above, equivalent 

to the graded Lie algebra eqs.(14.65,66). The ant icommutator  in eq.(14.66) 

is converted into a commutator  since the supercharges now correspond to 

(length) 2 = 2 roots of E6. 

The appearance of the exceptional group can also be used to show that  

the one-loop part i t ion function of any four-dimensional N = 1 supersym- 

metric heterotic string theory vanishes. Since every state is characterized 

by an E 6 weight vector it is clear that  the partition function contains the 

sum over the E 6 weight lattice, i.e. over the three level one characters of 

E 6 which are in one-to-one correspondence to the three different conjugacy 

classes (the level one Kac-Moody characters were introduced in Chapter  

11). The only subtlety which arises is the fact that  one must sum only over 

physical transverse states, namely those states which have fixed D4 lattice 

vectors =0 (see eq.(13.99)) when decomposing E 6 to D1 ® 04  ® U(1). We 

will call these restricted E 6 characters Chi(?-) where i denotes the three 

conjugacy classes 0, 1 and 1. Then the partition function has the following 

general form: 

X(~,?-),,, 1 1 Chi(v)Ch~=S,~=22(v,~)aij (14.69) 
Im?- 4 

where Ch~ =8'~=22 are the characters of the internal conformal (i 0, 1, i), 
field theory without the free boson H. The choice of the coefficients aij 
depends on the part icular  model and has to satisfy the constraints of mod- 

ular invariance and spin statistics. The "true" (unrestricted) E 6 characters 

were given in eq. (11.103). From them it is easy to derive the restricted, 

physical E6 characters if we make the truncation as described at  the end of 

Chapter  13. We find 

1 f 
Cho(?-) -- ~72(?- ) ~6~3(0]37-)03(0[?-) - 04(0[3?-)04(0[?-) - 02(0137")02(017")), 
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Chl(r) - 1 + ) (14.70) q2(v) 

~-27ri/3,qr2/31 } 
- ~ ,.,L,/=](OI3"r)64(OI T) , 

C h i ( r )  - 1 { _ t)[ 5~6 ] (01.37.)/~2 (OI,r.) ..}../)[ 1~3 ] (013/.)03 (OI,r.) ,72(  -) 
+ e-Tri/30[ U3 } ,/~_ ](013~')04(01~-) • 

Now, because of space-time supersymmetry, these characters (not however 

the original characters eq.(11.103)) are supposed to vanish identically. This 

can indeed be proven using the theory of modular forms [16]. 

By similar arguments as for the case of N = 1 supersymmetry one can 

also show tha t  the presence of two holomorphic supercharges (N = 2 space- 

time supersymmetry)  in four dimensions implies the existence of an internal 

right-moving SU(2) × U(1) Kac-Moody algebra which now extends D2,1 to 

E4,1 or D 5 to E 7. The supersymmetry on the world-sheet is now extended 

to a n - 4, c = 6 superconformal algebra plus a superconformal system 

with n = 2, c = 3. Finally N = 4 space-time supersymmetry implies an 

internal SO(6) Kac-Moody algebra which extends D2,1 to E5,1 respectively 

D 5 to E 8. We should mention tha t  the extended world-sheet algebras can 

only correspond to global world-sheet symmetries. The reason for this was 

given in Chapter  12. 
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Chapter 15 

Low Energy Field Theory 

String theory is claimed to be a unifying framework for the description 

of all particles and their interactions, including gravity. However, up to 

now our exposition of the subject was rather formal and it is not at all 

transparent how it can be relevant for low energy phenomenology. The only 

hint we got so far was from lookii, g at the spectrum. There especially the 

occurrence of a spin two tensor particle indicated that gravity might be con- 

tained in string theory. We have learned to formulate string theory directly 

in four dimensions and we know how to get massless vectors that  transform 

in the adjoint representation of a simply-laced gauge group. This gives us 

hope that string theory might provide a description of gauge theories. Also, 

the four-dimensional string theories contain plenty of massless scalars and 

fermions in non-trivial representations of the gauge group. 

In this final chapter we will show how contact with the real world is 

made. This will be done by deriving a point particle field theory Lagrangian 

which represents the low energy description of string theory in the sense 

that is reproduces string scattering amplitudes. Here low energy means 

that the string scale c~ l ~ 0; all massive modes have been integrated out 

and we obtain a description of the massless modes only. Since, as we will see 

below, the string scale turns out to be the Planck scale, all known particles 

have to be contained among the massless string states. Also, the couplings 

of the states will be related to the string coupling constant (cf. below) 
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and the string scale which is set by the string tension. Of course we are 

still far away from extracting the standard model Lagrangian with all its 

particular masses and coupling constants but at least we can see whether we 

find something semi-realistic, i.e. a field theory with generically the correct 

features. This is in fact all we can hope for at the moment.  

The first indication that  string theory is a low energy expansion about 

a point particle theory arose in a paper by Scherk [1]. Neveu and Scherk [2] 

showed tha t  in the limit where the Regge slope cJ --~ 0, the string scatter- 

ing amplitudes of the massless spin one particle of the open bosonic string 

can be reproduced by a Yang-Mills field theory. Subsequently it was shown 

by Yoneya [3] and Scherk and Schwarz [4] that  the effective action of the 

massless spin two state is, in the zero slope limit, given by the Einstein- 

Hilbert action of gravitation. Later the effective action for the superstring 

[5] and the bosonic part  of the heterotic string [6, 7, 8] in ten dimensions 

was derived. The formulation of four-dimensional heterotic strings allows 

to calculate directly from string scattering amplitudes the effective action of 

the massless modes in four dimensions. This was done in [9, 10] for super- 

symmetric as well as non-supersymmetric four-dimensional string theories, 

focussing mainly on the covariant lattice formulation. The calculation of 

string amplitudes and the effective action for orbifold theories can be found 

in [11, 12]. We will t ry  to present our results as model independent as possi- 

ble. However, whenever we need to be more specific, we will use as examples 

models based on the covariant lattice construction. In these models all ver- 

tex operators can be expressed, via bosonization, in terms of free fields and 

an explicit evaluation of all correlation functions is straightforward, if te- 

dious at times 1. This is done using Wick's theorem and the basic free field 

1This is mainly due to the loss of manifest covariance through bosonization. The 

covariant structure has to be reassembled from the cocycle factors. However, it 

is often easy to guess the structure and fix coefficients by looking at particular 
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two-point functions which we collect below for convenience: 

(Xi(z)XJ(w))  = -6 i~ ln(z - w) 

= ( z  - 

(¢(z)¢(w)) -- - ln(z - w) 

--* (eq¢(z)eq'¢(w))  ---- (z -:. w)  -qq '  , 

= - 

(15.1) 

(¢ arises from the bosonization of the superconformal ghosts.) The lattice 

vectors of the various vertex operators in a correlation function have to add 

up to zero. This lattice momentum conservation is nothing but invariance 

under the symmetries (Lorentz invariance, gauge invariance). 

The general procedure to extract the low energy field theory from string 

theory is the following: one first calculates various string scattering ampli- 

tudes of massless string states, represented by their vertex operators. Then 

one writes down a field theory Lagrangian which reproduces these ampli- 

tudes. This is done in a perturbative fashion. One starts by writing down 

the effective Lagrangian that describes the massless free particles, 1:2p t. 

Then one adds £3pt to reproduce the three point string amplitudes. £3pt 

already allows to relate various coupling constants of the effective action 

to the string coupling constant and the string tension at if we reintroduce 

powers of y / ~  to give dimensionally correct expressions. Especially higher 

powers of the external momenta will be accompanied by powers of v/-~ 7 via 

the substitution k ~ ~/-~k. In this way the expansion of the effective action 

in numbers of derivatives is an expansion in powers of V~ .  At the next 

step one considers the four-point amplitudes. Unitarity guarantees that the 

components. 
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massless poles will be those generated by the tree graphs of 17,3p t. This  al- 

lows us to check again the relation between the relevant coupling constants. 

The remainder is in general due to massive particle exchanges and will be 

reproduced by/~4pt- The contribution to the string four point amplitudes 

which are due to massive particle exchange can be expanded in powers of 

the external momenta. Each term in this expansion generates a local four 

point vertex in f-,4pt. This procedure can now be carried on to arbitrary 

order. At each order we will write £: in a form invariant with respect to 

all the global and local symmetries so that for instance the kinetic energy 

term for a charged scalar, which is part of E2pt, does already contain the 

three and four point couplings of the scalars to gauge fields (via gauge in- 

variance) and couplings to arbitrary order of the scalar to gravitons (general 

coordinate invariance). These couplings do of course have to reproduce the 

corresponding string amplitudes. 2 

It is however only possible to calculate string amplitudes with external 

on-shell states; we recall that this follows from the condition of BRST invari- 

ance of the vertex operators. This means that the amplitudes do not fix the 

field theory Lagrangian completely. However, appealing to symmetries such 

as general coordinate invariance, gauge symmetries and supersymmetry (if 

present) allows us to derive a unique (up to field redefinitions) Lagrangian 

which furnishes a low energy description of a given string model. Here we 

will only compute string tree level amplitudes. This restriction is not one 

of principle but rather one of simplicity: one and higher loop amplitudes 

are much harder to evaluate. 

2An alternative way of arriving at an effective action is the so-called sigma-model 

approach [13,14,15]. In this language what we are doing is a calculation to all 

orders in sigma-model perturbation theory and to lowest order in string perturbation 

theory. 
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We know from previous chapters that external physical on-shell states 

can be represented by vertex operators V(z, 5, k) where k is the momentum 

of the state. Then, in the language of conformal field theory, a N-particle 

amplitude is simply given by the correlation function 

A ~ g"V-2(Vx... VN) (15.2) 

where g is the string coupling constant. There is one power of the string 

coupling constant for each splitting of one string into two or two strings 

merging into one. 

As in ordinary field theory, where in the calculation of matrix elements 

we have to integrate over the positions of the field operators, we have to 

integrate over the insertion points of the vertex operators. The integrated 

vertex operators are the momentum space representatives of vertex oper- 

ators in position space. For instance, a general vertex operator has the 

form V(k) = f d2z'l)(2, z)e ikv'X~'(~''z) where ];(5, z) carries all the quantum 

numbers of the state, such as the behavior under Lorentz transformations 

and the charges with respect to internal symmetries (gauge symmetries). 

Fourier transforming it we get V(x) = f ddk f d2z])(5, z)eik~'X~'(2,Z)e ik'x" = 

f d2z'lZ(5, z)5(d)(x(2, z ) -  x). In ordinary field theory translation invariance 

results in an infinite volume factor. Here we have to deal with the invariance 

under SL2. We have learnt in Chapter 6 how to factor out the SL(2, C) 

volume. That led to the following prescription. We formally insert a factor 

c(zi, 5~ )c(zj, ~j )c(zk, 5k) (15.3) 
f 2 2 2 dz i dzj dz k 

This means that we arbitrarily fix the positions of three of the vertex op- 

erators, drop the corresponding integrations and insert ghost fields at these 

positions. One usually chooses for the fixed positions z = 0, 1 and co. For 

three point amplitudes it is however advantageous to keep them at arbi- 

trary (but fixed) values and the fact that the final amplitude has to be 
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independent  of them serves as a check, The ghost insertions do not change 

the conformal weights of the vertex operators since both  dz and c(z) have 

weight - 1 .  Also, we have shown in Chapter 5 that  if f d z V ( z )  is BRST 

invariant then so is c ( z )V(z ) .  Thus, for three point functions no integral is 

left to do. 

We also have to worry about the zero modes of the superconformal 

ghosts. At tree level there are two 7 zero modes. As discussed in Chap- 

ter 13 they are taken care of by choosing the ghost pictures for the vertex 

operators such that  their superconformal ghost charges satisfy ~ i  qi = -2 .  

As explained there, the amplitudes are independent of the way how the 

superconformM ghost charges are distributed over the various vertex oper- 

ators. For example, consider the four-point amplitude with two fermions 

and two scalars ~. Then it follows that (Vf~(1)V_~(2)V_~(3)V~(4)} -- 
'Z 2 

(v~½ (i)v_~ (2) v0~ (3) v_~ (4)), where the subscripts denote the ghost charges. 
The particular choice is a matter of convenience. 

We are now ready to present a few examples. At tree level correlation 

functions always factorize into an holomorphic and an anti-holomorphic part 

which .can be evaluated separately. We will start with the three gauge boson 

amplitude. To satisfy the superconformal ghost charge condition we need 

two of the graviton vertex operators in the q -- -I and one in the q - 0 

ghost picture. They are given by 

v_l(~,z, k) = %(k) J~(~)~e-¢(z)  e~x~(~,zl, 
(~5.4) 

Vo(2, z , k )  = el~(k) J i ( z )  [cgX t~ + i(k . ¢)¢t~](z)e ikpXp(~'z) , 

where e~(k) are polarization vectors which satisfy the on-shell condition 

~:"et~(k ) = 0. Let us look at a specific model with gauge group SO(2n)  

at level one. We can then write the currents as j i  = ~ : 1  ¢ M ¢ N  . (Ti)MN 

where the representation matrices are normalized as T r ( T i T  j)  = 2~ ij . (This 

corresponds to normalizing the root vectors to have (length) 2 = 2.) The 

evaluation of the three gauge boson amplitude 
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A = g(c~.V-x(~. l ,z , ,k l )c~V- l (22,z2,k2)c~.Vo(23,z3,k3))  (15.5) 

is now straightforward. It factors into several independent pieces. Most of 

them a trivial to evaluate. (We will give some details in our next example.) 

We find 3 

A ijk = g- Tr{[T i ,TJ]T  k} t ttltt2t*s c0)c(2)¢ (") (15.6) 
2 #1 #2 #3 

where we have abbreviated 

t#l#2t*3 = 3 .1 .2  /;~3 + ~3/~2/;~1 .+ ~ .3 .1  /;1/~2. (15.7) 

In the derivation of this result we have used momentum conservation/;1 + 

/;2 +/;3 = O, from which, together with /;2 = 0 for massless particles, it 

follows that  /;i • kj = O. We have also used the fact that  the momentum 

vectors will be contracted with transverse polarization vectors (i.e. we can 

replace e.g. k~ 2 k~3 2 since/;t~2E = 0). - ' * - -  2 /z2 

Our next example is the scattering of three gravitons. The vertex op- 

erators differ from those of the gauge bosons only in their left-moving part. 

They are 

v_l  ( ~, z, /; ) = ~.~,( k ) ~ x " (  ~)¢ ~ e -~  ( z) j k . x . (~ ,~ )  , 
(15.s) 

v0(~, z,/;) = ~.~(/;) 0 x . ( ~ ) [ a x  ~ + i(/;. ¢)¢~](z)jk.x.(~. ,z) ,  

where et, v(k ) is a polarization tensor which satisfies the on-shell condition 

kt~e#v(k) .- kVepv(/;) = 0. In fact, above vertex operators represent either a 

graviton (h#v), an anti-symmetric tensor (Bt, v) or a dilaton (D), depending 

on whether the polarization tensor is symmetric traceless, anti-symmetric 

or transverse diagonal: 

3We have to comment on the normalization of the amplitudes. They must be chosen 

such that massless pole terms in four point amplitudes factorize into products of 

three point amplitudes. Alternatively, one can fix the normalizations of the vertex 

operators by looking at a few amplitudes, for instance the coupling of various fields 

to the graviton. This should then give consistent results for all other amplitudes. 

For details we refer to the literature. 
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1 1 
h,~ = ~ ( e , .  + e~,) d - 2 cp"('b~ - k , t~  - t , k ~ ) ,  

1 
B,~  = ~(ct~ - E~) ,  (15.9) 

1 
D ~  - dv2-~_ 2(~#~ - k , ~  - ~ k ~ ) ,  

where we have defined a vector k such that  ~2 = 0 and k- k = 1. We some- 

times refer to these states collectively as G#v .  The vertex operators as given 

in eq.(15.8) are valid for all heterotic string theories in any dimension since 

they only involve the "space-time" degrees of freedom X~, Ct~ which are free 

conformal fields. The normalization of the dilaton is such as to lead to a 

canonically normalized kinetic energy (c.f. below). We will restrict ourselves 

in the following to the phenomenologically most interesting case of d = 4. 

The evaluation is again straightforward. Let us give some details for the 

[I 3 correlator ( i=1 OXV~(Y'i)elki'X(z-~)) • An easy way to evaluate it is to use the 

representation pi~OX~eiki 'x(~d = exp i[k i~X"(2 i ) - ip i~ox#(2 i ) ][ l in¢~r  i~ pi" 

We then use 

i 
(15.10) p'.j  k .j 

__ I I ( 2 i _ ~ 3  ,=.,ki.kj e x p { -  E (~---$j)2 + i  E zi . . . .  - zj } 
j > i  j > i  i C j  

from which we easily get by expansion 

3 

< II Jk''x(a)) 
i=i  (15.11) 

~b'21fl.'3Ll~'l~[ ~ = = ~-I ----i(t viv2v3 d- I "2 r~3 }~i2~i3~23] 

where we have defined zi j  = zi - z j .  The final expression for the amplitude 

is then 

A a a a  "--gtt*lt~2t~3t vlv2v3 e (1) ( k l ) e  (2) /k ~e (3) (k3) nuO(k4). (15.12) 
l i ly ,  1 /12v 2 ~, 2) ]i3v, 3 

This result is valid for heterotic strings in any number  of dimensions. If we 

drop the O(k 4) terms it is also valid for type II strings. 
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Our next example is the scattering of two space-time fermions and one 

scalar (Yukawa coupling). For this amplitude all three vertex operators can 

be chosen in the canonical ghost picture. In any lattice model the vertex 

operator for the fermions in the canonical ghost picture is given by 

v l(~,z,k) =~.(k)ei"L'XL(~)ei~"R'X's%-½~(z)e~k"X"(~':). (15.13) 

Here, u a ( k )  is a polarization spinor satisfying the on-shell condition (Dirac 

equation) ~u(k )  -- O. wL and WR specify the transformation properties of 

the fields under the internal conformal field theory: wL describes the charges 

of the states under the gauge group of the particular model. We have not 

written explicitly the cocycle factors. Masslessness of the fermions requires 

w 2 = 2 and w 2 -- 3/4. The scalar vertex operator takes the following 

generic form 

V_a(5, z , h )  = e i w L ' X r ( 5 ) e i w R ' X R e - ¢ ( z ) e  i]~'xl'(~''z) • (15.14) 

Masslessness of the scalar requires that  w 2 = 2 and w 2 = 1. For the 

amplitude to be non-zero, we need ~]3=1 wiz  = ~/3= 1 wiR = 0 from which it 

follows tha t  wiL .wj~, = - 1 ,  w l R ' u , 3 R  = w~.R'w3R = --1/2, and WlR "w2R = 

- 1 / 4 .  Then 
3 

( [ I  e iw ,~ .xL(~ , ) )  = ( 5 1 2 ~ 1 3 ~ ) - 1 ,  

i=1 ( i s . i s )  
3 

(1-I eiw~R'XR(zi)) -1/4 -1/2 -~/~ 
--" Z12 Z13 Z23 • 

i= l  

Also, the two fermions have to be of the same chirality to get a non-vanishing 

amplitude: 

( s " ( Z l ) J  (z~)> = c"~ z;~ 1/~. (15.16) 

The conformal ghost part  was given in eq.(6.50) and the superconformal 

ghost contribution is: 

-1/4 -1/2 -1/2 
( e - ~ ) / 2 ( z 1 ) e - ~ / 2 ( z 2 ) e - ~ ( z 3 ) )  --  z12 z13 Z23 • (15.17) 
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The final result for the Yukawa amplitude is then 

A -- n (u  (1)('].O~fl', (2)~pMNP (15.18) 

where C MNP is a Clebsch-Gordan coefficient which couples the three states 

to a Sillglet under the internal symmetries. It arises from the cocycle factors 

and the lattice momentum conservation constraint 6 (~  WiL)~(~ WiR). Its 

appearance is obvious. 

The calculation of four-point amplitudes is rather involved, even though 

straightforward. We will not present an example here and only make a 

few comments. After setting the insertion points of three of the vertex 

operators to 0, 1 and c~, there is one integration left which can be done 

explicitly. Most of the four-point amplitudes are model dependent. The 

only exceptions are the ones with only external gravitons, anti-symmetric 

tensors or dflatons, and, modulo the differences in the gauge group and 

the level of the corresponding Kac-Moody algebras, with external gauge 

particles. (In supersymmetric theories their supersymmetric partners are 

also allowed). This is easy to understand from a low-energy field theory 

point of view. Since no single matter  field couples to two fields in the 

gravitational or gauge sector, they cannot be exchanged in tree diagrams 

with no external matter  fields. 

Let us now turn to the problem of finding the field-theory Lagrangian 

that reproduces above string amplitudes. The gravitational sector contains 

a spin two particle which we identify with the graviton, an anti-symmetric 

tensor and a dilaton. Their action up to second order in derivatives is 

1 1 u 
~" = ~ / ' ~ { ~ 2 4 R -  le-2CDHIa~'PHI~UP6 - 2 9t~ OlaDOuD} (15.19) 

where •4 = ~ is the four-dimensional gravitational coupling constant 

(G is Newton's constant), R the curvature scalar and Hvvp = O~Bvp + 

OpBvv + OvBpv the totally antisymmetric field strength associated with the 

anti-symmetric tensor. The graviton field is defined by gvv = 77~v + 2a4h/~v. 
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A comment on the dilaton coupling is in order. It expresses the fact that 

the classical action is scale invariant and that a constant shift of the dilaton 

field amounts to a change of the overall constant in front of the action. 

This means that  each term in the Lagrangian must be multiplied by a 

factor exp[c(w-  1)D] where w is its conformal weight (in a four-dimensional 

sense) and c a constant to be determined later. The conformal weights are 

determined as follows, g~v(O'~) and gt, V(,~t~) have weights +1(+1/2)  and 

- 1 ( - 1 / 2 )  respectively; matter fermions have w - - 1 / 4 .  For space-time 

supersymmetric theories we also have a gravitino and a dilatino with weights 

+1/4 and - 1 / 4  respectively. 

What  we have to check now is whether this action reproduces the cor- 

responding string theory amphtudes. Only if it does can we identify the 

massless spin two string mode with the graviton and have justified the 

claim that  string theory automatically incorporates gravity, one of its ma- 

jor achievements. For three external gravitons the amphtude eq.(15.12) is 

to O(k 

A hhh = g((k2hlk2)(hgh3) + 2(k~hlh2h3kl) + cyclic perms.) (15.20) 

where the notation implies index contractions in an obvious way. If we now 

expand the Einstein-Hilbert action to third order in the graviton field we 

get 

2~.24~"~R -~4(htLVhPCr cgt~Ovhp,7 + 2cgCrhtLvcgtLhVPhp,7) (15.21) 3pt '-  

where we have used the on-shell conditions for the gravitons, i.e. kl~htLv = 

0, ht~tL ---- 0. This does indeed reproduce A hhh provided we set 

= ( 1 5 . 2 2 )  

where we have reintroduced the slope parameter to get a dimensionally 

correct expression. We have thus related the four-dimensional gravitational 
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coupling constant to the string coupling constant and the string tension. 

We now expand the H~up term in £: to third order: 

+ ~4h#U(OtzBo.pOuB ~zp + 4OpB,7.OuB p'z + 2OpBcr.OPB'Zu). 
(15.23) 

The first part reproduces (on-shell) 

ABBD 4 "- - - ~ g (  k2 B1B2kl) (15.24) 

which follows from eq.(15.12) with appropriate choice for the polarization 

tensors. Comparison determines the constant c to 

1 t c = ~v~J~'g = v ~ 4 .  (15.25) 

The second part of eq.(15.23) is to be compared with 

A hBB -- 9(-(k3hlka)(B3B2)+ 2(klB2hlB3k2) 

-- 2(k,2B3B2hl]Z3)- 2(kahlB3B2kl )  ) . 

We again find the relation eq.(15.22). Finally, 

reproduces 

( 5.26) 

(15.27) 

A = -g(k3 lk2) (15.2S) 

yielding eq.(15.22) once more. For all other choices of the external fields the 

string amplitude vanishes to O(k 2) and it is easy to see that £: does not lead 

to any other three-point on-sheU amplitudes either. The terms O((a') 3/2) 

or, alternatively, O(k 4) lead to higher derivative terms in the action; we will 

not discuss them here. 

One can next check that the three gauge boson amplitude is reproduced 

by the term in 

339 



= _ vcT _ ,,DTrl £ 

which is cubic in the gauge field. We find the relation 

g4 = ~g = ~4. (15.30) 

g4 is the gauge coupling constant in four dimensions which we have thus 

related to the gravitational constant and the string tension. With a gauge 

coupling constant of O(1) we find that the string scale (set by the string 

tension T ,'., 1 / a  I) has to be identified with the Planck scale. 

Let us now turn to the Yukawa coupling. The amplitude eq.(15.18) 

follows from the direct coupling term 

f - .  = Y v  - y  . . . . .  + h.c. (15.31) 

Comparison with the string amplitude shows that the Yukawa coupling 

constant y obeys 

Y "~ g4. (15.32) 

We see that  the non-vanishing Yukawa couplings are of the same order as 

the gauge couplings since in the covariant lattice construction the Clebsch- 

Cordan coefficients are either zero or O(1). 

Proceeding in this way one can relate all field theory coupling constants 

to the string coupling constant and the string tension; especially, all field 

theory couplings will be related. There are of course many more terms in 

£3pt which we would recover if we calculated other string amplitudes. But, 

for instance, all amplitudes with only gravitational external fields will, to 

O(v~-J), be reproduced by £ as given in eq.(15.19), partially through direct 

interactions and partially through graviton exchange. 

The comparison of string four-point amplitudes with field theory is quite 

cumbersome; it turns out that the string theory calculation is much easier 

than the field theory calculation, since in the former case there is only 

one correlation function to compute as compared to several field theory 
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diagrams. In the low energy field theory the four-point amplitudes are 

generated by the exchange of massless particles and by new local four point 

vertices. Therefore, to extract these new contact interactions from a given 

string four-point amplitude one has to subtract first all poles coming from 

the exchange of massless states. The exchange diagrams must be computed 

from E3p t which was derived from the three point string amplitudes. 

At the end of this chapter let us discuss some features of string scat- 

tering amplitudes and the resulting low energy effective action which are 

valid for any four-dimensional heterotic string construction. We will only 

use general information obtained from conformal field theory. As we have 

already mentioned, the vertex operators of the graviton, antisymmetric ten- 

sor field and dilaton are model independent since they involve only the free 

two-dimensional fields X/~ and ¢/~. Therefore, all N-point tree amplitudes 

involving only these fields are the same in any four-dimensional heterotic 

string theory. It trivially follows that the effective action eq.(15.19) in the 

gravitational sector is unique (up to field redefinitions), and the relation be- 

tween the gravitational coupling constant and the string coupling constant 

is universal. Indeed, this is true in any number of dimensions up to powers 

of x/~-Ta t which are necessary to make this relation dimensionally correct. 

Let us now reconsider amplitudes involving gauge boson vertex opera- 

tors. We assume that the gauge group G arises from the left-moving sector 

of the heterotic string and is due to a level k Kac-Moody algebra with 

currents ja  (~.): 

if"bcJc(e) 
Ja(E)']b('tT3) -- (5 ~ ~])2 ~- (-~-"- ~)) Jr-... (15.33) 

This equation shows that the normalization of the Kac-Moody currents 

depends on the level of the affine algebra: 

k~ ab 
( ' ] a ( 5 ) y b ( f f O )  - -  ( 5  - -  w) 2" (15.34) 
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Therefore, to relate the three gauge boson amplitude for level k to the one 

computed before, which was at level one, we need to rescale the currents by 

Ja(2,) = Ja(5)/V/k and the gauge boson vertex operator in the canonical 

ghost picture has the general form: 

1 
v ~ ( ~ , z , k )  = ~ A k )  e~(~) ¢,e-~(z) e~kpx~(~,z). (15.35) 

In the zero ghost picture it is given by 

Y:(~,z, k) = 1 -~e~(k)  Ja(5) [OX ~ + i(k . ¢)¢~](z)e {kpXp(~'z). (15.36) 

We can now easily compute the three gauge boson amplitude. The three- 

point correlation function of the left-moving internal currents ja(5) follows 

from the Kac-Moody algebra eq.(15.33): 

(]a(~l)]b(~2)]c(5~)) -- ifabc/V/~ (15.37) 
Z12Z13Z23 

The contribution from the right-moving sector is as before and the three 

gauge boson amplitude becomes 

A ijk g Tr{[T I, TJ]T k} t #ltt2tt3 ~(1)e(2)e(3) (15.38) 

The gauge coupling constant is now related to the gravitational coupling 

constant and the string tension via 

g4 - -  2 , ~ 9  = ~:4. 

We see that the level of the Kac-Moody algebra determines the ratio between 

the gauge and the gravitational coupling constant. 

As a final example, we want to give the general expression for the 

Yukawa couplings in any string model. The vertex operators of the mass- 

less fermions ~,i (i = 1 , . . . ,  NF) involve internal conformal fields G ~ (~', z) 

(see eq.(14.32)) of conformal dimension (~,h) = (1, ~) which depend on the 

specific model. Analogously, the vertex operators eq.(14.34) of the massless 
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scalars ~i (i -- 1 , . . . ,  NS)  contain internal conformal fields G¢I (5, z) of con- 

formal dimension (h, h) -- (1, ½). (For supersymmetric models N S -- NF.  ) 

Using the information about the conformal dimensions, the three-point func- 

tion of these internal operators has the following form: 

Cijk . (15.40) {G~"(51,zl)Gg'J(52,z2)G~k(53,z3)) = ~  . ~ 1/4 1/~ 1/2 
~12~13~23Z12 Z13 Z23 

The coefficients Cijk are the operator product coefficients and contain all 

information about the non-vanishing couplings between these fields. The 

contribution of the space-time spin fields and of the ghost fields is as before; 

they cancel the z-dependence in eq.(15.40). Thus, the final result for this 

amplitude is 

Aij k "- gCijku~)Ca~u(~ 2). (15.41) 

We see that the Yukawa coupling constants Yijk ~ gCijk are determined by 

the operator product coefficients of the internal conformal field theory. This 

is in fact the case for all three point amplitudes as we know from Chapter 4. 

Which scalars and fermions are present and their operator product coeffi- 

cients does, of course, depend on the specific model under considerations. In 

the covariant lattice construction the Cijk were always Clebsch-Gordan co- 

efficients of some simply laced Lie algebra which are all of O(1). We should 

note, however, that in general t h e  Cij k are not necessarily all of the same 

order of magnitude. Therefore there might be a possible hierarchy between 

the various Yukawa couplings. For example, this is actually the case in orb- 

ifold compactifications where the Yukawa coupling constants may depend 

exponentially on the size of the orbifold the string is compactified on. 

This concludes our contact with low energy physics. Of course, the 

relation among the various coupling constants should be understood to hold 

at some scale close to the Planck scale. From there to low energies, they will 

evolve according to the renormalization group equations. Also, string loop 

effects can give masses to some of the matter fields. With these remarks, 
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our exposition in this chapter can only be understood as an illustration of 

how to get familiar physics (point particle field theory) from string physics. 
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